
1

Implementations of Regular Expressions

Craig E. Ward
CMSI 583 Theory of Computation

Loyola Marymount University

April 28, 2003

Abstract

This paper is a survey of some of the software implementations of Regular

Expressions. Tools developed primarily for education or research are reviewed as

well as several of the more popular engines in production use. The influence of

POSIX standards will be addressed. It will be shown that many of the tools

diverge from theory in order to bring greater utility and practicality to problem

solving.

1 Introduction

Regular Expressions are a powerful tool in use in many software systems for

matching patterns in large amounts of text. They are based on an algebra of regular sets

first described by Stephen Kleene in the 1950s.1 The first published description of an

implementation, the grep utility, was by Ken Thompson in 1968.2 While the algebra of

regular sets provides the foundation for all implementations, current tools go beyond the

theory to fill practical needs in production environments.

Tools primarily used for educational or research purposes tend to match theory much

more closely than tools intended for use in business or other non-academic settings. Two

tools, JFLAP and Grail+, used for teaching will be reviewed. Following these, the

1 Jeffrey E. F. Friedl, Mastering Regular Expressions (O’Reilly & Associates, 1997) p. 60.
2 ibid

2

development of tools that built on the experience of grep will be examined and will

include a description of what these tools did that diverged from the theory of regular sets.

The paper will conclude with a discussion of what all of this may mean to the relationship

between theory and practice.

2 Teaching Tools

Teaching tools tend to process definitions of automata. Their roles are more of

illustration and experimentation than production.

2.1 Grail+

The first tool to examine is the Grail+ system from the University of Western

Ontario, London, Ontario, Canada.

Grail+ is a suite of command line programs and a library of C++ classes and

functions. The class library can be linked with other programs. The command line

programs are implemented as UNIX-style filters, i.e., they may be used as standard

UNIX filters in a shell environment. Table 1 contains a partial list of the filters in version

2.5 of Grail.3

Filter Description

fmcment complement a machine

fmcomp complete a machine

fmcat catenate two machines

fmcross cross product of two machines

fmdeterm make a machine deterministic

3 For a complete list, see Darrel Raymond and Derick Wood, “Grail: Engineering Automata in C++” 1996,
p. 11.

3

Filter Description

fmstar star of a machine

iscomp test a machine for completeness

isdeterm
test a machine for determinism

isempty
test for equivalence to empty set

restar Kleene star of a regular expression

retofm convert a regular expression to a machine

retofl convert a regular expression to a finite language

Table 1: Some Grail filters

The Grail system introduces some special characters to facilitate writing regular

expressions and defining automata. Two double-quote characters (“”) denote an empty

string and two braces ({}) denote the empty set. These are concessions to the ASCII

character set. The following are examples of regular expressions in Grail:4

• a+b
• ((a+bcde*)+c)*
• {}
• “”a

Unfortunately, the Grail system is not supported on any of the systems available to

the author. Porting to other systems should be feasible, but would require more time than

is available.

4 Darrell Raymond and Derick Wood, “Grail: Engineering Automata in C++” 1996, p. 4.

4

2.2 JFLAP

JFLAP is a graphical tool from Duke University for teaching Formal Languages and

Automata Theory. The system is Java-based and should be usable on any system with a

Java 2™ JVM. (The screen shots in this report are from JFLAP 4.0 Beta , released March

3, 2003, on a system running MacOS X 10.2.5.)

JFLAP was created to give students a “hands-on” experience with NFA and DFA

machines.5 The beta version review here includes regular expressions and other aspects

of computing theory. Figure 1 shows the initial JFLAP screen.

Figure 1: Opening screen of JFLAP.

5 Susan H. Rodger and Eric Gramond, “JFLAP: An Aid to Studying Theorems in Automata Theory” ACM
SIGCSE Bulletin Volume 30 , Issue 3 (September 1998), 302.

5

Once the program is opened, the user can select any of the supported types or open a

previously saved file. The system is able to run NFAs and DFAs as well as convert

between them and regular expressions. It does not run the regular expressions directly,

but a student can convert a regular expression into an NFA and either run it or convert it

further into a DFA. (Converting these machines back into regular expressions does not

create the same regular expression text, but it is the same language.) Figure 2 illustrates

what the screen looks while running a DFA in one of four ways.

Figure 2: Running a DFA in JFLAP.

6

JFLAP uses the standard syntax for entering regular expressions, parentheses group

symbols, “+” for union, and “*” for closure. The dialog box itself is simple and is not

displayed here.

3 Production Tools

The last set of tools to be examined are all in-use in one way or another in production

environments. Regular expressions, referred to as regexs, aid software engineers, system

administrators, web application designers, and others to solve a variety of tasks.

The first tool to implement regexs was a text editor called ed. It had a function for

displaying lines of text in a file that matched a pattern: g/Regular Expression/p, read

“Global Regular Expression Print”. The routine proved so useful that it became a

standalone utility: grep.6

The grep utility lead to the creation of many similar utilities in an ad hoc manner.

Among the most used tools are egrep (modern extended grep), awk, GNU Emacs (a Lisp

processor), Tcl, Python, flex, Java, JavaScript, and perhaps the most important one of all,

Perl. The full history of this development is beyond the scope of this paper. It should be

noted, however, the situation has improved.

3.1 Regex Shorthand Symbols

The standard descriptions of regular expressions use a small set of special symbols or

metacharacters. Parentheses are used to group other regular expression characters. The

plus sign, “+” is used to show the union of two regular expressions. A star, “*” is used to

indicate the Kleene closure of the set. Production implementations add to these and

change them. Metacharacters are used to simplify matching ranges of characters,

6 Friedl, p. 61.

7

counting characters, match by position, and other enhancements. Table 2 shows a

selection of the most common metacharacters. (Particular tools may require different

symbols, but the usage will be mostly the same.)

Character Feature Usage
. Dot Match any one character
[…] Character class Match any character in class
[^…] Negated character class Match any character not listed
\char Escaped character When char is a metacharacter, or not otherwise special, match

as literal. Also used in some tools for machine-dependant
characters (backspace, newline, etc.).

? Question Match 0 or one of preceding.
* Star Mach 0 or more of preceding.
+ Plus Match one or more of preceding.
{min, max} Specified range Min matches required, max allowed.
^ Caret Matches at the start of string (line).
$ Dollar Matches at end of string (line).
 \< Word boundary Matches position at start of a word.
\> Word boundary Matches position at end of a word.
| Alternation Matches either expression it separates.
(…) Parentheses Limits scope of an expression, provides grouping for

quantifiers (?, *, +, {min,max}), and “captures” for back
references.

\1, \2, … Back reference Matches text previously matched within first, second, etc., of
set of parentheses. Some tools use $1, $2, … .

Table 2: Common Metacharacters7

These metacharacters provide a short hand that allows for concise, powerful patterns

for regular expressions to match. They also open the way to confusion and unexpected

results to the unwary. The meaning of metacharacter can change or it could stop being a

metacharacter depending on where in the regular expression it appears. For example,

caret is an anchor metacharacter outside of a character class and a negation metacharacter

inside of a character class.

The POSIX standard for regular expressions added named character classes.

Examples include “[:alnum:]” for all alphabetic and numeric characters and “[:punct:]”

7 Adapted from Friedl, p. 29.

8

for punctuation characters.8 What these mean can be changed by a locale setting in the

runtime environment.9

3.2 Engine Types

There are two basic regex engine types. Their names reveal the theoretical

foundations of each. These are DFA and NFA. The addition of the POSIX standard

effectively creates a third type, the POSIX-NFA engine.

3.2.1 DFA Engines

The DFA class of engines are modeled by Deterministic Finite Automata. These

engines are noted for being fast and efficient, and, according to Friedl, boring.10 Friedl

describes the speed as coming from the ability of a DFA engine to simultaneously

(“almost magically”11) keep track of all possible matches. Although he does not explicitly

say so, this is likely a result of the deterministic characteristic of DFAs. Each state has

one new state to move to for each input symbol. Paths that will not generate a match lead

to dead ends.

3.2.2 NFA Engines

The other class of regex engines is modeled by Nondeterministic Finite Automata.

The POSIX standard for regular expressions further divides this class into Traditional-

and POSIX-NFAs.

8 Friedl, p. 80.
9 Friedl, p. 65.
10 Friedl, p. 101.
11 ibid.

9

The POSIX standard requires that regular expression engines match the “longest of

the leftmost” pattern.12 For DFA engines, this is what they do naturally. NFA engines

require a change .

The traditional NFA engine will stop with the first possible match. This might not be

the only or the longest match. The POSIX standard requires that regex engines not stop

with the first possible match. This has made NFA engines more complex and slower, but

with a benefit of greater flexibility.

Both varieties of engines must keep track of where they have been in order to

backtrack from a failed match. At each point where an NFA has a choice of transitions, it

must choose one and remember the others. If an attempted match fails, the backtracking

rewinds the machine and chooses another attempt.13

As in the case of DFA engines, Friedl does not explicitly state where this behavior

comes from. It does, however, seem a natural consequence of the nondeterministic

nature of NFAs. An implementation must be able to manage the lambda moves as well as

the multiple possible choices of the transition function.

Table 3 lists several popular implementations and the automata model used.

Tool Version Engine Type
awk Generic DFA
GNU awk Recent DFA with some NFA
egrep Generic DFA
MKS egrep Generic POSIX NFA
GNU Emacs All Traditional NFA (POSIX NFA available)
Perl All Traditional NFA
Tcl All Traditional NFA
JavaScript 1.5 NFA, subset of Perl 5 regular expressions14

Java 1.4 NFA, subset of Perl 5 regular expressions15

Table 3: Some popular tools their regex engine types. 16

12 Friedl, p. 117.
13 Friedl, p. 103
14 David Flanagan, JavaScript: The Definitive Guide 4th Edition (O’Reilly & Associates: 2002) p. 147.
15 Ron Hitchens, Java NIO (O’Reilly & Associates: 2002) p. 153.

10

3.3 Beyond Regular Expressions

What is it about these implementations that takes them beyond traditional theory? The

concepts of backtracking for grouping, greedy metacharacters, and alternation. Friedl

makes the case the term regular expression no longer fits, that these expressions are

actually irregular.17 Each of these features will be examined.

3.3.1 Backtracking for Grouping

Many regex tools have the ability to select sub-matches from a match and reuse that

text later in the evaluation of the regex. This provides a powerful utility. But with that

power comes danger. If the regex is poorly crafted, it can cause a significant performance

hit. Friedl uses as an example a small Perl script that searches a text file for repeat

words.18 The regex must remember what it has already matched in order to know if the

next word is the same.

3.3.2 Greedy Metacharacters

As a general rule, metacharacters attempt to match the longest possible string. This

can cause later parts of the regex to fail to match. Engines get around this by

implementing a rule that says that metacharacters must “give back” characters if letting

them go would allow a later part of the regex to succeed.19

16 Adapted from Friedl, p. 90 with additions as indicated.
17 Friedl, p. 104.
18 Friedl, p. 31.
19 Friedl, p. 94.

11

3.3.3 Alternation

Complex regexs can be created using the alternation symbol, “|”, grouped with

parentheses. This simplifies the coding and amplifies the possibilities for inefficient

evaluations.

As an example, the regex ^(Subject:|From:) will find the Subject and From fields

in a file of email. While this example is straight forward, imagine a context where one of

the possible matches would occurred much more frequently than the others. If that sub

expression were the last in the sequence, a lot of resources would be wasted checking for

the less common sub expressions.

This is a significant issue for NFA engines. The “longest-leftmost” match rule of the

POSIX standard requires alternation be greedy and check all the possibilities even after

an initial match is found. Crafting an efficient NFA regex is a hard earned skill.

4 Conclusions

This paper has only scratched the surface of regular expressions. The examples of

metacharacters do not necessarily match any particular tool, but do indicate what types of

metacharacters to look for. If anyone were forced to learn just one, Perl looks like the

clear winner. (The most recent additions to the regex world, JavaScript and Java, both use

Perl as their model.)

The educational tools review, especially JFLAP, should have a prominent role in

teaching the fundamentals. Clearly the fundamentals are important if only to aid the regex

developer to better code efficient NFA expressions.

12

It seems equally clear that practical implementations have moved beyond basic

theory. The simple fact that production engines are used for pattern matching and not for

explicitly evaluating whether a particular string of symbols is in the language of an

automaton is the main force behind changing the implementations to diverge, if ever so

slightly, from established theory. The why of this is best summed up by a quote from Ian

Graham in a presentation he gave at Carnegie Mellon University: “It’s much easier to

hack that to make a good proof.”20

Of course, that doesn’t mean that no one should try.

20 Ian Graham, “Kleene Would Be Shocked: Redrawing the Link between Theory and Modern Regex
Engines” REU Summer 2002 Symposia, Aladdin Center, Carnegie Mellon University, Slide 37.

13

5 Bibliography

Flanagan, David. JavaScript: The Definitive Guide, 4th Edition. Sebastopol: O’Reilly &
Associates, Inc. 2002.

Friedl, Jeffrey E. F. Mastering Regular Expressions. Sebastopol: O’Reilly & Associates,
Inc. 1997.

Graham, Ian. “Kleene Would Be Shocked: Redrawing the Link between Theory and
Modern Regex Engines.” Presentation at REU Summer 2002 Symposia, Aladdin
Center, Carnegie Mellon University, 2002. URL: http://www.aladdin.cs.cmu.edu/reu/.

Ron Hitchens. Java NIO. Sebastopol: O’Reilly & Associates, Inc. 2002.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation, 2nd Edition. New York: Addison Wesley. 2001.

Raymond, Darrell, and Derick Wood, “Grail: Engineering Automata in C++.” University
of Western Ontario. 1996. URL: http://www.csd.uwo.ca/research/grail/grail.html.

Rodger, Susan H. and Eric Gramond, “JFLAP: An Aid to Studying Theorems in
Automata Theory” ACM SIGCSE Bulletin Volume 30 , Issue 3 (September 1998),
302. URL: http://www.cs.duke.edu/~rodger/tools/jflaptmp/.

http://www.aladdin.cs.cmu.edu/reu/
http://www.csd.uwo.ca/research/grail/grail.html
http://www.cs.duke.edu/~rodger/tools/jflaptmp/.

