Craig E. Ward

CMSI 587 Operating Systems, Instructor Tri M. Nguyen, Doolan 104

Assignment 7 File Systems

April 9, 2003

1. Considerations of Linked, I-Node, and NTFS

Assumptions: (1) The new block to add has already been selected; (2) Caching is ignored; (3) Updating the list of free blocks is not included.

1.1 Linked

Adding a block between the 50th and 51st blocks under a linked file systems would require 50 reads to get to the 50th block. The pointer to the 51st block would then need to be saved in memory. The pointer to the new 51st block would then overwrite the old value in block 50. The pointer to the next block of the new 51st will contain the saved pointer. The updated block 50 and new block 51 are written back to disk. The used capacity of the disk has no effect on the process. (50 reads, 2 writes)

Adding a block to the end of a 100 block file would require 100 reads to get to the end of the file. The new block address would be added to the 100th block and the updated block written back to disk. The 101st block is also written out to disk. The used capacity of the disk has no effect on the process. (100 reads, 2 writes)

Removing block 50 would require 50 reads to get the 49th and 50th blocks. The address of the 51st block of the file would over-write the address of the old 50th block in block 49. The updated block 49 would then be written back to disk. (50 reads, 1 write)

1.2 I-Node

Adding a block between the 50th and 51st blocks under an I-Node file system would require two reads to bring in the initial inode record and then a second read to get to the first indirect inode, which will contain the addresses of the 50th and 51st blocks. The new block address is inserted into the indirect block. (The first indirect block is assumed to contain 256 possible entries. The second indirect block is therefore not required.) The new indirect block is written to disk as well as the new block of data. (2 reads, 2 writes)

Adding a block to the end of a 100 block file would require two reads to get the initial inode and first indirect block. The address of the 101st block is inserted to the first redirect at offset 100. The updated block is written back to disk as well as the new data block. (2 reads, 2 writes)

Removing block 50 would require two reads to bring in the initial inode and the first indirect block. The first indirect block is updated by squeezing out the address of block 50. The updated indirect block is written back to disk. (2 reads, 1 write)

1.3 NTFS

Adding a block between the 50th and 51st blocks under NTFS would require reading into memory the record for the file in the Master File Table (MFT), updating the file record in the MFT by inserting a record into the Data attribute, writing the updated MFT to disk, and writing the new block to disk. (1 read, 2 writes)

Adding a block to the end of a 100 block file would require appending a record to the Data attribute for the file in the MFT, synchronizing the in-memory MFT with the disk copy, and writing the new block to disk. (1 read, 2 writes)

Removing block 50 would require removing a record from the Data attribute for the file in the MFT and synchronizing the in-memory MFT with the disk copy. (1 read, 1 write)

1.4 Which is best?

Given just the criteria of the three scenarios, the NTFS approach appears slightly better (one less initial read). Using an I-Node approach would almost be as good. The clear “loser” is the Linked file system; it would be poor choice. Determining which approach is best would depend on a greater range of likely scenarios that the potential system would encounter. Some batch-processed database systems might be able to make good use of a linked approach, but only in a narrow range of usage patterns.

2. The pros of a single root directory from the point-of-view of the OS is simplicity. The types of files that the OS needs to contend with are reduced to executable and data files. (Assuming that the OS is not UNIX-like in that it uses a file paradigm for accessing all resources.) The cons from the OS side are that this can limit the number of files and the files that are there could take up more resources to manage. For example, keeping the entire directory structure in memory (real or virtual) can cause a performance hit as the OS tries to find one particular file of user interest.

For the user, a single root directory also has the benefit of simplicity. However, having all files in one location can quickly cause the number of files to be unwieldy, making it difficult for a user to keep data logically grouped. Users would need to constantly be aware of how wild cards could be used to view the names of a subset of files.

The old Macintosh OS (Mac OS 9 and earlier) used a flat structure internally but presented the user with the appearance of a hierarchy. The locations of files were kept in an invisible database. This database, however, was a constant source of problems. It was a standard recommendation that users regularly “rebuild the desktop” to keep their machines healthy.

3. Source code for inspector.c attached.

Ward
Page 2 of 2
4/1/03

