Craig E. Ward

CMSI 587 Operating Systems, Instructor Tri M. Nguyen, Doolan 104

Assignment 8: Security and Protection & Distributed O/S Overview

April 30, 2003

1A. Trojan Horse – Non-Replicating

Such a Trojan Horse would beat a reasonable access matrix in that the attacker would acquire whatever access rights the victim possessed. The more privileged the victim, the more damage the attack will do.

1B. Trojan Horse – Replicating Virus

Such a Trojan Horse would beat a reasonable access metric the attacker would acquire whatever access rights the victim possessed. The difference between this variety and the non-replicating is just the intent of the attacker. A replicating virus would be able to infect any executable file (MS Word VB macros make DOC files executable.) to which the victim had write access rights. This would imply that a “reasonable” access matrix did not allow most users to write to system executables.

In addition to replication, such a virus might also go about modifying or deleting any or all files that the victim has write or delete access rights.

1C. Trojan Horse – Replicating Worm

Such a Trojan Horse would beat a reasonable access matrix the attacker would acquire whatever access rights the victim possessed. The difference between this variety and the virus is that worms do not need other programs to hold their executable code. (In biology, viruses must embed themselves in other cells. Bacteria replicate on their own so “bacterial infection” might have been a better analogy than “worm.”) The classic worm is the Morris Internet worm which attacked vulnerabilities in system code.

The Morris worm attack took advantage of poor buffering practice in system software (buffer overflow) and “trusted host” configurations between systems.

1D. Trap Door

No access matrix can defend against a trap door attack. The software intended to enforce the access matrix can itself be compromised. This attack illustrates how people are both the strongest and weakest links in any security protocol.

1E. Stolen Password

A stolen password allows an attacker to assume the persona of the victim. The system has no way to distinguish the attacker from the legitimate user, therefore, an access matrix, no matter how reasonable, can not withstand this attack.

2. Distributed systems suffer from these sources of failures:

1. Hardware Failures: A part of the system, whether a host or a device such as a shared printer or disk drive, can fail. The design of the system must account for this possibility and either work around it or obey the standard requirement to degrade gracefully.

2. Configuration Errors: Distributed system are inherently more complex so the possibilities for introducing human errors are increased in number.

3. Data integrity: Distributed systems must be able to handle a resource being used (read or write) at a physical location not the location of the resource. This is especially true of distributed file systems.

4. Security: The complexity of the environment makes designing and creating the software more difficult. Security is inversely proportional to complexity.

3. Keeping the service simple would be a benefit to a stateless design. The World Wide Web is natively stateless which is why technologies such as cookies were quickly added to the mix. (The reference to Tanenbaum does not exist in the second edition.)

4. Developing the userinfo program as described for MacOS X turned out to be significantly more difficult than first assumed. It turns out that Apple has changed the security manager to use a new technology called “Open Directory.” Releases of MacOS X prior to the current one (10.2) used a hold-over technology from Next Computers called NetInfo. Only in researching NetInfo did I learn of the changes in progress. Directory services use a plug-in architecture with two high-level APIs: Pluggable Authentication Modules (PAM, out of the Linux environment) and Common Data Security Architecture (CDSA). MacOS X also supports the old-style BSD flat files (in /etc) if Directory Access is configured to use it. It is not so configured by default. There were too many possibilities to evaluate in the time allotted. Complicating the issue for me was that my system did not have the full headers for the PAM code in spite of having the Apple developers package installed.

The attached source for userinfo only does “user info” functionality. It displays the content of the user data stored in the security system database. (NOTE: It looks to me like getpwnam(3) does not work as documented. It should NOT return the encrypted password unless the caller is the root user.)

Ward
Page 2 of 2
4/30/03

