Exploration of a Stock Market Simulation

Craig E. Ward

CMSI 587 Operating Systems

Loyola Marymount University

May 7, 2003

Abstract

This paper reports on the author’s experience of modifying an existing client-server stock market simulation coded to run on a single MacOS X machine into a distributed system with a threaded server and clients capable of running under the Linux operating system. The original system and the modifications are described. Although the modifications improved the system, the results suggested additional enhancements. These are described and conclusions drawn.

1 Introduction

The goal of the exercise was to explore some aspects of system programming. A stock market simulation was a tool for that exploration. The validity of the simulation was not of paramount concern. The behaviors of the system probably do not realistically correspond to the behaviors of a real stock market.

The original system illustrated the use of operating system capabilities for inter-process communication (IPC) and ran completely within the context of one machine. The server and clients communicated using a message exchanging protocol built on the User Datagram Protocol (UDP). UDP is a connectionless transport and part of the Internet Protocol Suite (commonly referred to as TCP/IP).

The transport protocol UDP is an unreliable, best effort, protocol.
 It is suitable for the purposes of the IPC exercise because the communication link between processes is completely reliable. The danger with UDP is that a datagram could be lost. When the route is entirely within one machine, datagram loss is not possible.

2 Original System

The simulation system consisted of two parts, a single market server process and an unbounded number of client trader processes. The server opened a socket using UDP and a fixed port number from which to read request messages from clients and to send responses on. The clients created a socket and connected it to the same fixed port number. Simple text messages were exchanged indicating a request to the server and the result of the request.

The interaction between the server and clients used a stop-and-wait pattern. The server blocked on reading from the socket. When a request came in, it was read, processed, and a response sent back. While the server processed the request, no new requests could be read.

When a request to buy or sell a stock arrived, the server would check to see if the request could be satisfied and if so, it would randomly increase or decrease the current value of a stock. If the stock went below a threshold ($1 in this case), the stock would be “delisted” and removed from the set of available stocks.

Clients would randomly select from five possible activities:

1. Sleep.

2. Request a price check of a stock.

3. Request to buy a stock.

4. Request to sell a stock.

5. Display the content of their “portfolio” using the last received price.

When a client chose to send a request to the server, it built the request message and sent it using UDP to the server. The client would then block on a socket read waiting for the result of the request. The result could be that the stock was successfully bought or sold, an updated price, or a notice that a stock had been delisted and removed from the market. Delisted stocks had to be removed from the trader portfolio. The mechanics and data structures of these operations are not of key concern here.

A key feature of the trader clients was that the initial process would fork a runtime-controlled number of child processes that would act as independent traders. A semaphore was used to prevent contention on the terminal screen during portfolio displays. The module that wrapped the use of the semaphore was Mac OS X-specific.

The system ran until all stocks had been removed from the set of available stocks at which point the server exited. Clients would learn of this at their next communication attempt because the communication protocol, UDP, would generate a “connection refused” error. At the first failure to communicate with the server, a trader client would exit.

3 Modifications

The system worked well as an IPC exercise. To exercise additional features of systems programming, the following modifications were chosen:

1. Change the server from stop-and-wait into a multi-threaded server using POSIX threads (pthreads).

2. Update the clients to not use blocking I/O.

3. Port the semaphore routines in the clients to the Linux operating system (Red Hat 7.1).

3.1 New Market Server

3.1.1 Pthreads

The server was made multi-threaded using the boss-worker pattern.
 The initial thread becomes the “boss” and creates additional “worker” threads to service requests as they arrive. Although the server was not available to receive a new request during the time it took to create a new thread, this interval should be less than any interval used for processing the requests themselves, as was the case with the IPC version of the server.

Threads also have an advantage over the “traditional” approach to a server in a client-server system. Traditionally, the server would fork a child process to handle incoming requests. Creating a “heavy” process is more expensive in system resources than creating a “lightweight” thread.

3.1.2 Pthreads Semaphores

The introduction of threads into the server required some way of coordinating access to the common stock market data structure. It would not be appropriate to allow unrestricted access because it would result in race conditions. One thread might be trying to change a stock price up while another thread was trying to change it down. Or one thread could start to decrement the count of available shares while another got in to increment it. These updates to the data were not atomic.

The pthreads library provides functions to create, get, and release pthread semaphore objects. These were placed around the code in the server that manipulated the stock prices and count of available shares.

An additional pthread semaphore was created to control access to the UDP socket. This prevented the UDP data for one client from getting the text message intended for another.

3.2 New Trader Clients

3.2.1 Non-Blocking I/O

Non-blocking I/O was added to the client processes using the select(2) system call. This call allows a process to wait a limited amount of time on an I/O resource. The call either returns with an indication of which resource was ready or an indication that the timer had expired. Instead of potentially waiting forever on a response from the server, the client could be informed of the communication problem and proceed with processing. In the implementation, a timeout was treated as a fatal error causing the client trader to terminate.

3.2.2 Semaphores

Linux and Mac OS X handle semaphores differently. Linux implements System V IPC
 semaphores and Mac OS X does not.
 The module, semaphores.c, handling the access to the semaphore for the application had to be coded such that it could be compiled appropriately on each respective platform. A C preprocessor macro is defined that effectively toggles the implementation code for each platform. This way, the differences between host operating systems are invisible to the application code.

3.3 Distributed Systems Mix-and-Match

As a result of these modifications, the system could be run either entirely on Linux or entirely on Mac OS X or any mix of clients and server on either. The system was first demonstrated with the server running on a Macintosh PowerBook and clients on a Linux machine . A second demonstration ran the market server on the Linux box and the clients on the PowerBook.

4 Issues of the Enhanced System

Although the system as modified improved on the initial system, during the implementation of the changes, some additional issues presented themselves.

4.1 Pooled Threads?

Could the server be more responsive using a pool of threads instead of creating a new thread for each request? Probably. However, the change would add more complexity to the implementation. Managing the dispatch of requests to workers and managing a pool that needed to handle an unbounded number of clients would complicate the code. It is not clear that this added complexity would be worthwhile for the type of system developed.

4.2 UDP Unreliability?

The original system used UDP for IPC on a single machine. This worked well; however, once the system becomes distributed, the issue of UDP unreliability arises. The system as implemented can not handle a lost message. (To be sure, on an Ethernet LAN, this is unlikely; however, even a Ethernet can become congested and lose frames.)

One approach that would help is to add acknowledgements to each exchange. The server acknowledges each request before serving it and each trader acknowledges receiving a result. This does not really seem to help as it just pushes the problem out one more step. What if an acknowledgement is lost?

It became clear that for this type of system, accounting for reliability in UDP would require reinventing TCP. If this were a real system with real money involved, the loss of a transaction could not be tolerated. It would be better to modify the system to use TCP. The boss-worker model would not need to change; the service thread would keep the connection open until the exchange completed, then close the connection.

4.3 Threaded Clients?

The trader client program uses the fork(2) system call to create the required number of client processes. It is possible to use the pthreads library to not require more than one trader process. The value of this would be limited because the fork is only preformed once for each client and then is not used again. The balance of simplicity falls clearly on the side of using the simple fork call.

5 Conclusions

The new features of the enhanced system were worthwhile. The addition of threads greatly improved the performance of the server.

The exercise in coding for the differences in semaphores on two different systems was also worthwhile. It is easy to assume that all UNIX-class operating system are the same. Clearly, the experience gained in developing semaphore wrappers that hide these differences is important as other operating systems, such as Windows, become part of the mix.

6 Bibliography

Curry, David A. UNIX Systems Programming for SVR4. Sebastopol: O’Reilly & Associates, Inc. 1996.

Nichols, Bradford, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Programming. Sebastopol: O’Reilly & Associates, Inc. 1996.

Tanenbaum, Andrew. Modern Operating Systems, 2nd Edition. Upper Saddle River: Prentice Hall. 2001.

Stevens, W. Richard. UNIX Network Programming. Englewood Cliffs: Prentice Hall. 1990.

� W. Richard Stevens, UNIX Network Programming, (Prentice Hall:1990) p. 200.

� ibid

� Because the simulation itself is of secondary importance, the actual format of the messages will not be presented.

� The boss-worker pattern is described in Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell, Pthreads Programming, (O’Reilly & Associates: 1996) pp. 31-32.

� A good description of System V semaphores can be found in David A. Curry, UNIX Systems Programming for SVR4, (O’Reilly & Associates: 1996) pp. 385-389.

� For Linux, see the man pages for semctl, semget, and semop. For Mac OS X, see sem_open, sem_close, sem_wait, and sem_post.

7

