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Abstract

Selecting an implementation programming language for a software system is one
of the most important decisions made during the creation of any software system.
Different programming languages have different implications for the difficulty or
ease of developing secure code. This paper takes eleven vulnerabilities including
buffer overruns, malicious input, and race conditions known to exist in deployed
systems and analyzes five different languages (C, C++, Java, Perl, and ML) to
compare how each language either aids or hinders the creation of a secure
software system.

1. Introduction

Software systems play an increasingly large role in society.  The range of software systems spans
the spectrum from fun and games to mission and life critical applications. Software is
everywhere.

Building these systems is difficult. Designing and building a system that will function as its
creators intend is hard. Designing and building a system that will satisfy its users' needs is
harder. Additionally, the complexity of the interactions between systems and users creates a new
area of concern.  This is the area of software security.

Many resources and tools are required when building a software system. A programming
language is one of the key elements of that mix. The programming language chosen for a system
has a direct effect on how a system is to be created and what means must be used to ensure not
only that the system functions as expected, but that it is secure and does not function in
unexpected ways.

This paper explores the issue of system security from the standpoint of some popular
programming languages. What additional pitfalls come with the choice of a particular language?
What benefits can a system creator gain by choosing another language?

1.1. Languages Analyzed

The five languages analyzed for each vulnerability cover a broad range of styles and approaches
to programming. Four of the five languages are imperative programming languages, three of
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which also support object orientation. The fifth programming language is a functional language.
One language is interpreted and one compiles into byte codes for a virtual machine. Selecting a
broad variety of programming languages makes the comparisons more meaningful. Each
language can be viewed as a representative language for a more general type. Scott [1] provides
the categorization of the selected programming languages. Table 1 lists the languages, versions,
and platforms used for the research.

Table 1: Languages and versions used for research.

Language Version Platform
Java 1.4.2 Mac OS X
C GCC 3.3 Mac OS X, Cygwin
C++ GCC 3.3 Mac OS X
Perl 5.8 Mac OS X
Standard ML Moscow ML 2.01 Windows XP, Mac OS X

Sources used to check the details of each language were as follows. For Java, [2] and [3], [4] for
C and [5] for C++, [6] for Perl and lastly, [7] for Standard ML.

1.2. Identifying the Vulnerabilities

Vulnerabilities were selected after reviewing the literature on secure programming standards.
Two general texts are [8] and [9]. The former is concerned with writing secure software and the
latter addresses the issue of how to break software. These sources primarily use C and C++ for
their examples with a few in Java and Perl used to illustrate particular points.

Many lists of what to do and what not to do can be found online. Sun Microsystems provides
guidelines for both Java and C in [10] and [11].  Additional recommendations for Java are at
[12].

Security issues for Perl are covered in [6].

Some of the sources used for identifying and describing the vulnerabilities come from
"nontraditional" sources. These are described in [13]. This "parallel world" to traditional
conferences and journals is one that cannot be ignored.

Table 2: Vulnerabilities analyzed.

Race conditions Malicious input
Integer overflow Format string vulnerabilities
Buffer overflow on the stack Buffer overflow on the heap
Java inner classes Class comparison by name
C++ virtual pointer exploit Pointer subterfuge
Arc Injection

Just as the selection of programming languages seeks to cover a wide range of types and
approaches, the selection of vulnerabilities also seeks to cover more than just a set of problems
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with one particular programming language. The vulnerabilities listed in Table 2 range over those
that programmers using any language must contend with (race conditions and malicious input) to
those that are not only exploits targeted at systems written in a particular language, but particular
implementations of that language (arc injection and pointer subterfuge). The hope is that the
analysis can have more benefits other than just implying that a language is somehow "not good"
or another is “good.”

2. Analysis of Vulnerabilities

Each subsection will give a general description of the vulnerability and then follow with
examples in each language illustrating how the vulnerability exists or does not exist for that
language.

The sequence of the vulnerabilities is significant. The list runs from the most general to the most
specific. Some vulnerabilities present security issues regardless of the programming language.
Other vulnerabilities are tightly focused only on one implementation of a language.

2.1. Vulnerability: Race Conditions

A race condition can occur when a sequence of operations are time dependent in a multithreaded
or multiprocessing environment. A thread of instructions will be suspended to allow another
thread time to execute. While a thread is suspended, the environment that the thread is depending
on can be changed in unexpected ways.

The cause of these problems is usually an implicit, and incorrect, assumption that the operations
in question are atomic. The solution to these problems is to isolate the most relevant code in a
critical section that can be treated as logically atomic. The general solution is beyond the scope
of this paper.

Most race conditions result in faulty behaviors and do not constitute security vulnerabilities.
Those that do have security implications relate to file system access [8]. These flaws are called
time-of-check, time-of-use flaws, TOCTOU for short. This aspect will be examined in this
section.

All of the programming languages in the study contain features that allow code to be written that
creates race conditions in file system access.

2.1.1. Vulnerability in C
The primary problem in C comes from using a system call to check whether the current process
has rights to that file before actually opening the file. A process using that approach can be
suspended between the time the access check is made and the time the actual file is opened.
While the process is suspended, another process can change which file is associated with the
name. The code in Figure 1 (adapted from [8]) illustrates the problem.
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#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main()
{
  char filename[] = "text.txt";
  FILE *fp;
  if (!(access(filename, (R_OK|W_OK)))) {
    if ((fp = fopen(filename, "r+"))) {
      fprintf(fp,"Write something");
      (void)fclose(fp);
    } else {
      perror("fopen");
    }
  } else {
    perror("access");
  }
  exit(0);
}

Figure 1: Race condition example written in C.

The window of vulnerability, the race condition, is the time between the completion of the
access call and the beginning of the fopen call. Because the program is using a name for the file,
the actual file the name points to can be changed, especially on file systems that support
symbolic links, or another file with malicious content substituted. These are significant issues for
scripts run with privileges. (More on the scripting issue below in the subsection covering Perl.)

Not only does this code introduce a race condition, but also it does so by performing an
unnecessary step. If the current user does not have the appropriate privileges to write to the file,
the access system call will indicate this by its return value, but if the user cannot write to the file,
the underlying file system also will cause the fopen library routine to fail. That should be
sufficient for an application.

Beyond this simple example, [8] describes how the passwd command in some versions of SunOS
and HP/UX created a vulnerability by accepting a target password file from the user and then
creating temporary copies of the file in order to update it. By using symbolic links to manipulate
the meaning of the string given for the target password file, an attacker could get a bogus
password entry into any location. (The example illustrated the technique by creating a .rhosts file
in a targeted user directory. This would allow the attacker to login remotely as that user.)

The primary tactic for countering TOCTOU attacks is to avoid using system and library calls that
take a filename as an argument. Use instead the calls that take a file handle or file descriptor.
Once the operating system has assigned a file handle or descriptor, it cannot be changed as easily
as the manipulation of a filename with symbolic links.1

                                                
1 Viega and Mcraw [8] also provide a recommended sequence that reliably checks that the file in question does not
change during the operation. This sequence is Unix-centric and goes beyond the issue of language itself.
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2.1.2. Vulnerability in C++
The same system and library calls available to C are also available to C++. The same issues and
remedies apply.

C++ also has its own I/O stream classes. Using these classes and avoiding the C library calls
would limit the vulnerability. Once the initial stream object is associated with a filename, the
natural tendency would be to use the class object for I/O purposes. This would implicitly be
using file descriptors instead of a filename.

2.1.3. Vulnerability in Java
As with C++, Java uses a class structure to facilitate I/O. The java.io package (and the new I/O,
java.nio, added for Java 1.4) have many classes for tailoring the input and output streams of a
program.

Java I/O classes can be used to create a race condition similar to the simple C example above.
Figure 2 illustrates a similar program. The File object has methods for checking the permissions
that the current process has for reading or writing a file along with other features of the file. This
object can be created with a filename. If a Java program were to use this class to test for access
writes and then use the filename again to actually open the file, it would create a race condition
between the time the access was checked and the time the file was actually opened. If, however,
the same program used the just created File object it would reduce the potential of a TOCTOU
attack.

import java.io.*;

public class ExampleFileIO{
    public static void main(String[] args) {
        if (args.length != 1) {
            System.out.println("error: need a filename");
            System.exit(1);
        }
        File file = new File(args[0]);
        System.out.println((file.canRead() ? "You may" : "You may not")
                           + " read " + file);
        System.out.println((file.canWrite() ? "You may" : "You may not")
                           + " write " + file);
        FileWriter fw;
        try {
            //fw = new FileWriter(args[0]); // Invite race condition
            fw = new FileWriter(file); // Better
            fw.write("Write something in Java.\n");
            fw.close();
        } catch (Exception e) {
            System.out.println(e);
        }
        System.exit(0);
    }
}

Figure 2: Race condition example in Java.
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Because Java is running on a virtual machine, this technique depends on the implementation of
that machine. It is still possible that internally the JVM is creating the FileWriter object from a
string. As with the C example above, it is still better to not do the checking in the application but
to just try to create the FileWriter and let the JVM internals do the checking.

2.1.4. Vulnerability in Perl
Race conditions must be guarded against in Perl. The behavior described in the example for C
can be replicated in Perl. See Figure 3.

use warnings;
use strict;
my $file = "pl-text.txt";
if (-r $file) {
    open(FH, "< $file")
        or die "can't open $file for reading: $!";
    my $line = <FH>;
    print "$line\n";
} else {
    print "$file cannot be read by you!\n";
}

Figure 3: Race condition example in Perl.

This program checks the status of the file before issuing the open request. Because Perl is an
interpreted language, the window of vulnerability for this pattern is larger than in C.

The scripting nature of Perl also shows how easy it is for a chain of trust to break. Old versions
of the Unix kernel had a race condition vulnerability when they ran scripts with the setuid bit set.
(Run as the owner of the file instead of the current user.) Executable scripts in Unix start with the
characters "#!" and when these kernels detected them, they would start a new interpreter process
(any interpreter, not just Perl) with the user id set to match that of the file. It would then pass the
name of the script to the privileged process running the interpreter. The time between the kernel
detecting the script and passing the name to the interpreter created a window of vulnerability
where an attacker could replace the script with one of her own choosing. Newer kernels now
pass a type of file handle to the privileged interpreter process.

2.1.5. Vulnerability in ML
The standard basis library for ML has a structure named OS.FileSys. This structure contains
functions that can check the accessibility of a file for the current user. As with the examples in
the other languages, the time between the test and the use of the file is a window of vulnerability.
The code in Figure 4 illustrates.
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$ mosml
Moscow ML version 2.00 (June 2000)
Enter `quit();' to quit.
- load "OS";
> val it = () : unit
- if OS.FileSys.access("text.txt",[A_READ]) then
 print "You can read the file\n"
else
 print "You cannot read the file\n";
You can read the file
> val it = () : unit
-

Figure 4: Race condition example in ML.

2.2. Vulnerability: Malicious Input

The Malicious Input vulnerability comes into play when a program makes use of data input from
a user or other external source. This data can contain elements that the programmer did not
expect and the program does not handle.

A particularly dangerous activity is a program that uses another program in a child process to
perform part of the system functionality. The two distinct programs become part of a chain of
trust within the system. If something outside of the expected range of data is passed between the
two processes, exploits are possible.

The tactic to counter the problem is to validate and sanitize the input before using it. Most
programming languages do not provide any built-in assistance for this problem and those
features that can be used are easily circumvented by a lazy programmer.

2.2.1. Vulnerability in C
For a high level language, C is very close to the machine and core operating system. The
standard library contains the function system. This function will fork a child process and start a
shell with the command given in its argument. Nothing in the system library function does any
checking of the arguments. That is left to the programmer. The following code illustrates a
simple use of the system library call.
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/*
 * Example of how NOT to handle user input
 */
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[])
{
  if (argc != 2) {
    printf("usage: %s command\n", argv[0]);
    exit(1);
  }

  printf("Running command \"%s\" for you!\n", argv[1]);
  exit(system(argv[1]));
}

Figure 5: Malicious input example for C.

Here is a sample run of the program. Note that because the system library call forks a shell, all of
the additional capabilities of a shell are present beyond just the command being run.

$ ./example_mi "echo Something Wicked This Way Comes > Wicked"
Running command "echo Something Wicked This Way Comes > Wicked" for you!
$ cat Wicked
Something Wicked This Way Comes
$

Figure 6: Sample output from example in C.

The example illustrates that the shell meta character ">" was processed as if it had been used on
an interactive command line. Other shell meta-characters could also be used, e.g. "cat
/etc/password | mail badguy@evilhost".

2.2.2. Vulnerability in C++
C++ has the same fundamental capabilities as C. The same system library call is available and
the issue is the same. The language provides no protection for the program.

2.2.3. Vulnerability in Java
The Java language environment has many built-in security features. However, most of these
security features exist to protect the machine from malicious code. The problem of malicious
input is still present. A Java programmer must still consider the dangers of data.

The standard language package includes a Runtime object and this object has an exec method.
This method will run a command and its arguments in a process outside of the Java Virtual
Machine. The following program illustrates one use of this method. Daconta [14] was useful for
figuring out the mechanics of the Java Runtime object.
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/*
 * Example of how NOT to handle user input
 */
public class RunCommand
{
    public static void main(String[] args) {
        if (args.length != 1) {
            System.out.println("usage: java RunCommand command");
            System.exit(1);
        }
        System.out.println("Starting command " + args[0]);
        Runtime rt = Runtime.getRuntime();
        try {
            Process p = rt.exec(args[0]);
            int exitValue = p.waitFor();
            System.out.println("Process p exited with " + exitValue);
        } catch (Throwable t) {
            t.printStackTrace();
        } finally {
            System.exit(0);
        }
    }
}

Figure 7: Malicious input example for Java.

The Runtime.exec method creates a process and returns a reference to a Process object. The
Process object has methods to query the exit status or to pause the Java thread while the external
process runs.

An added wrinkle for an attacker is that, unlike the C and C++ environments, Java does not fork
a shell and setup the standard I/O ports. Java only runs a command and its arguments. (If the
Java program needs to read from or write to the command, it must set these up manually.) An
attacker could not rely on shell meta characters to launch additional commands.

As written, the RunCommand program does not do much that is visually interesting. It must be
interrupted at the keyboard when it is given a command that will wait for input.

$ java RunCommand "echo hello"
Starting command echo hello
Process p exited with 0
$ java RunCommand "sh"
Starting command sh
^CProcess p exited with 2
$

Figure 8: Output of example Java program.

2.2.4. Vulnerability in Perl
In addition to security features that address the issue of malicious code, Perl has a feature that
addresses the problem of malicious data. Perl is the only language in this sample that has such a
feature. This is the Perl taint mode.
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Perl considers data that comes from either the command line or standard files to be tainted, that
is, untrustworthy. Certain Perl operations are prohibited when tainted data is used. The taint
mode is not automatic; it must be turned on with the "-T" switch. The example in Figure 9
illustrates how tainted data affects the Perl system command.

use strict;
use warnings;

my $arg;
foreach $arg (@ARGV) {
    system "echo $arg";
}

$ perl example_mi.pl Hello Perl World!
Hello
Perl
World!
$ perl -T example_mi.pl Hello Perl World!
Insecure $ENV{PATH} while running with -T switch at example_mi.pl line 6.
$

Figure 9: Example program for Perl along with output.

What Perl is complaining about is that the environment is unknown so using the input data
cannot be used safely. The modifications to the code in Figure 10 illustrate untainting. (Code for
untainting adapted from [6].)

use strict;
use warnings;

# Make the environment safer so that external data can be used
delete $ENV{ENV};
$ENV{PATH} = '/bin:/usr/bin';

my $arg;
foreach $arg (@ARGV) {
# untaint each word in the argument by filtering it for
# acceptable characters

if ($arg =~ /^([-\@\w.]+)$/) {
    $arg = $1;

} else {
    die "Bad data in $arg";

}
    system "echo $arg";
}

Figure 10: Perl program illustrating taint mode and filtering input.

This version prints the first two arguments as the other when run without taint mode enabled.
The last argument has a character that the regular expression will not accept. Figure 11 shows an
example of untainting data.
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$ perl -T example_mi2.pl Hello Perl World!
Hello
Perl
Bad data in World! at example_mi2.pl line 15.
$

Figure 11: Output of example program in Perl.

The Perl taint mode is a powerful feature for aiding in the construction of a secure software
system.

2.2.5. Vulnerability in ML
The standard ML library includes facilities similar to C and C++ for interacting with the host
operating system. The programmer must do filtering and sanitizing within the program itself; the
runtime will not help the way Perl does. Figure 12 illustrates.

C:\>mosml
Moscow ML version 2.01 (January 2004)
Enter `quit();' to quit.
- load "OS";
> val it = () : unit
- OS.Process.system "cmd.exe";
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\ >exit
> val it = <status> : status

Figure 12: Moscow ML program illustrating malicious input issue.

2.3. Vulnerability: Integer Overflow

An integer overflow occurs when a value is stored in a location smaller than that location can
hold. A common result is that data is lost without the running program being able to detect it.
Depending on the implementation, the overflow can be represented by a modular wrapping
around to the lowest value or saturating the integer by keeping it as the maximum possible value.

Integers are interpreted as either signed or unsigned. Unsigned values make use of all of the bits
to represent the number while for signed integers the high order bit is used as the sign indicator.
Mixing signed and unsigned values in an expression can cause problems.

Another possibility is that data can be lost in some languages if an integer of, for example, thirty-
two bits is assigned to an integer intended for a sixteen bit value.

All of these problems can cause unexpected behaviors in a running program. These behaviors
can result in security vulnerabilities or an unexpected termination of the program.
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2.3.1. Vulnerability in C
The C language has several arithmetic types and allows for implicit conversions between them.
This creates a lot of opportunity for integer overflows. These overflows are not detected by the
runtime. The value in the variable wraps around to the lowest possible value for the type.

2.3.1.1 Loss of Precision
The programmer is allowed to make implicit assignments in C. These can cause loss of precision
in the results. The program in Figure 13 illustrates the issue. (All examples for the vulnerability
in C are based on [15].)

/* ex1.c - loss of precision
 * phrack 60 article 0x0a
 */
#include <stdio.h>

int main(void){
  int l;
  short s;
  char c;

  l = 0xdeadbeef;
  s = l;
  c = l;

  printf("l = 0x%x (%d bits)\n", l, sizeof(l) * 8);
  printf("s = 0x%x (%d bits)\n", s, sizeof(s) * 8);
  printf("c = 0x%x (%d bits)\n", c, sizeof(c) * 8);

  return 0;
}

Figure  13: Loss of precision example for C.

The Figure 14 shows the output of the program in Figure 13.

$ ./ex1
l = 0xdeadbeef (32 bits)
s = 0xffffbeef (16 bits)
c = 0xffffffef (8 bits)
$

Figure 14: Output of program in Figure 13.

As the thirty-two-bit integer is assigned to smaller variables, bits are lost.

2.3.1.2 Overflow from Calculation
A calculation can result in the overflow of an integer variable as show in the program in Figure
15.
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/* ex2.c - an integer overflow
 * phrack 60 article 0x0a
 */
#include <stdio.h>

int main(void){
  unsigned int num = 0xffffffff;

  printf("num is %d bits long\n", sizeof(num) * 8);
  printf("num = 0x%x\n", num);
  printf("num + 1 = 0x%x\n", num + 1);

  return 0;
}

Figure 15: C program illustrating an overflow from calculation.

When run, the program in Figure 15 shows how the value in "num" wraps around to 0. Note that
"num" is an unsigned value. Output is in Figure 16.

$ ./ex2
num is 32 bits long
num = 0xffffffff
num + 1 = 0x0
$

Figure 16: Output of program in Figure 15.

2.3.1.3 Changing Sign
A calculation can also change the sign of a signed value as shown in the example in Figure 17.

/* ex3.c - change of signedness
 * phrack 60 article 0x0a
 */
#include <stdio.h>
int main(void){
  int l;

  l = 0x7fffffff;

  printf("l = %d (0x%x)\n", l, l);
  printf("l + 1 = %d (0x%x)\n", l + 1 , l + 1);

  return 0;
}

Figure 17: Example of integer overrun that changes the sign value.

When run, the program wraps the value of "l" back to the negative number, as shown in Figure
18.
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$ ./ex3
l = 2147483647 (0x7fffffff)
l + 1 = -2147483648 (0x80000000)
$

Figure 18: Sample output from program in Figure 17.

2.3.1.4 Exploits
Integer overruns are difficult to exploit. One possibility is to overrun the integer being used to
protect a copy or allocation operation. Many standard C library routines do not do bounds
checking. A common counter measure is to put these routines within an "if" statement that does
the check before allowing the routine to be called. If the integer variable can be overflowed, that
check will fail and possibly allow for a buffer overrun attach to follow. Figure 19 contains an
example of the issue.

/* width1.c - exploiting a trivial widthness bug
 * phrack 60 article 0x0a
 */
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]){
  unsigned short s;
  int i;
  char buf[80];

  if(argc < 3){
    return -1;
  }

  i = atoi(argv[1]);
  s = i;

  if(s >= 80){            /* [w1] */
    printf("Oh no you don't!\n");
    return -1;
  }

  printf("s = %d\n", s);

  memcpy(buf, argv[2], i);
  buf[i] = '\0';
  printf("%s\n", buf);

  return 0;
}

Figure 19: Example of an exploit of integer overflow in C.

Figure 20 contains examples of running the program.
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$ ./width1 5 hello
s = 5
hello
$ ./width1 88 hello
Oh no you don't!
$ ./width1 65536 hello
s = 0
Segmentation fault
$

Figure 20: Sample output of program in Figure 19.

2.3.2. Vulnerability in C++
As in C, C++ allows implicit conversion of arithmetic values. C++ has additional syntax forms
that do allow for greater clarity in explicit casts. They do not, however, change the fundamental
problem.

2.3.3. Vulnerability in Java
Java has problems similar to those found in C. Integer values wrap around without detection in
the program. The problem is lessened considerably, however, by the Java type system and built-
in bounds checking. Figure 21 is a translation of an example in C.

public class Width1
{
    public static void main(String[] args) {
        short s;
        //int s;
        int i;
        char []buf = new char[80];

        i = Integer.parseInt(args[0]);
        s = (short)i;

        if (s >= 80) {
            System.out.println("Oh no you don't!");
            System.exit(-1);
        }

        System.out.println("s = " + s);

        for (i = 0; i < s; i++) {
            buf[i] = args[1].charAt(i);
        }
        System.out.println(buf);
    }
}

Figure 21: Example of integer overflow in Java.

The line "s = (short)i;" illustrates one of the defenses provided by Java. The programmer must
explicitly force the conversion into a short integer. Java does not allow this to happen implicitly
the way C does.
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Using the explicit cast allows for the loss of precision and therefore the comparison of the value
in "s" to 80 does not protect the copy. However, the copy will not happen because "s" will start
out less than "i". This could cause other unexpected results later in the execution of some
program using this construct. Output of the program in Figure 20 is in Figure 21.

$ java Width1 5 hello
s = 5
hello
$ java Width1 65536 hello
s = 0

$ java Width1 6 hello
s = 6
Exception in thread "main" java.lang.StringIndexOutOfBoundsException: String
index out of range: 5
        at java.lang.String.charAt(String.java:444)
        at Width1.main(Width1.java:28)
$

Figure 22: Sample run of the program in Figure 21.

2.3.4. Vulnerability in Perl
The Perl language does not have explicit integers. Perl has a scalar type and the meaning of the
scalar is determined dynamically. Perl allows the programmer flexibility without the dangers of
integer overflows found in C, C++ and Java. Figure 23 contains a simple example.

use strict;
use warnings;

my $l;
my $s;
my $c;

$l = 0xdeadbeef;
$s = $l;
$c = $l;

print("l = ", $l, "\n");
print("s = ", $s, "\n");
print("c = ", $c, "\n");

$l = -0x7fffffff;
$s = $l;
$c = $l;

print("l = ", $l, "\n");
print("s = ", $s, "\n");
print("c = ", $c, "\n");

Figure 23: Perl program testing integer overflow.

Figure 24 contains the output from the sample program in Figure 23.
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$ perl ex1a.pl
l = 3735928559
s = 3735928559
c = 3735928559
l = -2147483647
s = -2147483647
c = -2147483647
$

Figure 24: A sample run of the program in Figure 23.

2.3.5. Vulnerability in ML
ML only has the one integer type and it cannot be implicitly converted into another type. The
implementation used for this paper does have a limit on the size of an integer value. Unlike the
other languages, however, it will tell the user when an overflow happens, as shown in Figure 25.

>mosml
Moscow ML version 2.01 (January 2004)
Enter `quit();' to quit.
- val l = 0x3fffffff;
> val l = 1073741823 : int
- val x = l + 1;
! Uncaught exception:
! Overflow
- quit();
>

Figure 25: Sample ML program showing an integer overflow exception.

Throwing an exception limits the possibilities of an exploit.

2.4. Vulnerability: Format Strings

This vulnerability grows out of the formatted output features of C. The C standard library
function printf2 is passed a set of arguments that are processed and inserted as characters into an
output stream. The first of these arguments is a format string of conversion specifiers that
describes the number and type of arguments to follow. These format strings represent a
language-within-the-language.

The issue arises when the format string is passed to a printf function instead of being hard coded.
This allows a possibly malicious caller to control how the printf call performs. Giving away this
control allows an attacker to more easily reverse engineer a program and find more
vulnerabilities.

Fortunately, the problem is easily found by static source code analyzers. According to [13], the
vulnerability was largely eliminated shortly after it came to light in the late 1990s. [9, p. 317] It

                                                
2 The library also has fprintf and sprintf, which share the same format string language. Formatted input functions
have a similar format string language.
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is still worth examining, however, as prevention to its accidental re-introduction into new
systems.

2.4.1. Vulnerability in C
The code, adapted from [9], in Figure 26 illustrates the issue.

/*
 * format string vulnerability
 * adapted from [Hoglund, McGraw, 2004]
 */
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
  if (argc < 2) {
    printf("usage: %s <format-string>\n", argv[0]);
    exit(1);
  }
  printf(argv[1]); /* format string implicit in argument */
  printf("\n");
  exit(0);
}

Figure 26: Format string vulnerability in C.

The program is allowing outside input to control the interpretation of the arguments to the printf
function. Several features of the format string language allow unsafe behaviors.

2.4.1.1 Printing Data from the Stack
Using the conversion specifier "%08x" can cause printf to print a double word from the stack.
Each occurrence of this in the format string will cause the function to look at the next address for
the argument to print. Because the format string is an argument, it is on the stack and this allows
the attacker to work back up the stack, revealing its contents. By seeing what else is on the stack,
an attacker can often gain insight into what to look for next.

Another method is to use the "%s" format to print the stack as a string. This will take everything
up to a null byte.

!!$! !.!/!e!x!a!m!p!l!e!_!f!s!1! !A!A!A!A!A!A!%!0!8!x!%!0!8!x!%!0!8!x!%!0!8!x!
!A!A!A!A!A!A!b!f!f!f!f!b!c!8!b!f!f!f!f!b!d!4!b!f!f!f!f!c!4!0!8!f!e!5!0!7!8!4!
!$ .!/!e!x!a!m!p!l!e!_!f!s!1! !A!A!A!A!A!A!%!0!8!x!%!0!8!x!%!0!8!x!%!0!8!x!_!%!s!_!
!A!A!A!A!A!A!b!f!f!f!f!b!c!4!b!f!f!f!f!b!d!0!b!f!f!f!f!c!3!c!8!f!e!5!0!7!8!4!_!?!?!$!?!?!(!p!?!?!8!?!?!)!(!?!?!P!?!?!*!(!?!?!p!?!?!+!(!?Bà!?!?!,!(!?B†!
?!?!,!P!?!?��!?!-��!?!?!?!?!-!?!?!_!
$

Figure 27: Output of example program from Figure 26.

These techniques are useful for probing software and are tactics for reverse engineering of the
code. These probes might reveal security or control data that the developers had considered
hidden. With this data revealed, an attacker can gain an advantage and potentially access to
whatever data or resources the hidden security element was intended to protect.
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2.4.1.2 Writing Data
Other conversion specifiers can be used to write data into arbitrary areas of memory. The
specifier "%n" will write the number of characters printed up to that point into the address
specified by the corresponding argument. Using a field width with the "%u" specifier can add
arbitrary padding to this data. This combination can write anything to any address.

$ ./example_fs1 AAAAAAx04xF0xFDxF7x41x41x41x41x41%08x%08x%08x%08x%16u%n
AAAAAAx04xF0xFDxF7x41x41x41x41x41bffffba8bffffbb4bffffc208fe50784
2414151164
$

Figure 28: Output of C program used with "%n" specifier.

The ability to write to any address allows an attacker to do things like change access flags or the
flow of the program.

2.4.2. Vulnerability in C++
The same functions that can cause problems in C are also available in C++. However, C++ has a
new, object oriented, set of I/O functions. While C++ programmers can still chose to use the C
standard I/O routines, their use is discouraged.

#include <iostream>

int main(int argc, char *argv[])
{
  if (argc < 2) {
     std::cout << "usage: " <<  argv[0] << "<format-string>" << std::endl;
    exit(1);
  }
  std::cout << argv[1] << std::endl;
  exit(0);
}

Figure 29: Example program in C++ illustrating alternatives to format strings.

When C++ streams are used, as in Figure 29, the format strings vulnerability disappears.

$ ./example_fs2 AAAAAA%08x%08x%08x%08x
AAAAAA%08x%08x%08x%08x
$ ./example_fs2 AAAAAA%08x%08x%08x%08x_%s_
AAAAAA%08x%08x%08x%08x_%s_
$

Figure 30: Output of example code in Figure 29.

C++ I/O makes use of an inheritance class structure to standardize the use of output routines. For
basic text output, the "<<" operator is overloaded to seamlessly take characters, strings, integers,
and other types in a stream of operations. The code shown in Figure 31 illustrates this feature.

#include <iostream>

int main(int argc, char *argv[])
{
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  if (argc < 2) {
     std::cout << "usage: " <<  argv[0] << " argument1 [argumentN]" <<
std::endl;
    exit(1);
  }
  for (int i = argc-1; i > 0; i--) {
    // notice that overloaded "<<" operator takes characters, integers, and
    // strings.
    std::cout << '[' << i << "] " << argv[i] << std::endl;
  }
  exit(0);
}

$ ./example_fs4 ABCDEFG 123456 uwxyz
[3] uwxyz
[2] 123456
[1] ABCDEFG
$

Figure 31: Alternate example and sample run for C++.

2.4.3. Vulnerability in Java
Java has some format strings, but they are not as general as the format strings in C printf
functions. Java format strings are usually used for localization features. The running program can
receive indicators from the environment that control how numbers or dates are displayed, e.g.
using a European date format instead of a US format. These format strings do not have the
vulnerability.3

Most output in Java is similar to C++ in use, but different internally. In C++, the "<<" operator is
an overloaded function that is returning the stream for the next operator to use. In Java, a string
concatenation operator, "+", builds strings that are passed to the output stream. For objects that
are not strings, the println method calls the objects toString method automatically.

public class ReverseCountEcho
{
    public static void main (String[] args) {
        for (int i = args.length - 1; i >= 0; i--) {
            System.out.println("[" + i + "] " + args[i]);
        }
    }
}

Figure 32: Example code in Java.

When the code in Figure 32 is run, the class simply echoes its arguments in reverse order on a
separate line.

$ java ReverseCountEcho ABCDEFG 123456 uwxyz
[2] uwxyz

                                                
3 While this paper was being written, Sun Microsystems released a new version of Java that contains a new
Formatter object that uses conversion specifiers similar to those in C. These have not been investigated but is it
doubtful that these format string specifiers add the vulnerability to Java.
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[1] 123456
[0] ABCDEFG
$

Figure 33: Run of example code in Figure 32.

2.4.4. Vulnerability in Perl
Perl supports functions similar to the C printf family in the standard C library. These functions
are implemented differently and do not suffer the same problems as the C counterparts. Using the
same format strings as in the example for C show that these strings are simply echoed. If, as
should be the case for all production code, warnings are enabled, Perl will send error messages to
the standard error output stream. Figure 34 contains an example Perl program and its output.

use strict;
use warnings;

my $arg = shift(@ARGV);
printf($arg);
print("\n");

$ perl example_fs2.pl AAAAAAx04xF0xFDxF7x41x41x41x41x41%08x%08x%08x%08x%16u%n
Use of uninitialized value in printf at example_fs2.pl line 6.
Use of uninitialized value in printf at example_fs2.pl line 6.
Use of uninitialized value in printf at example_fs2.pl line 6.
Use of uninitialized value in printf at example_fs2.pl line 6.
Use of uninitialized value in printf at example_fs2.pl line 6.
Modification of a read-only value attempted at example_fs2.pl line 6.
$

Figure 34: Perl program and output illustrating format strings.

Notice that Perl complains that the "%08x" specifiers are not paired with actual arguments and
that the "%n" is attempting to write to a read-only area.

For most output in Perl, the simpler and more efficient print function is recommended [6, p.
594]. This function also illustrates how Perl can evaluate scalar variables for the most
appropriate type depending on the context of use. The code is in Figure 35.

use strict;
use warnings;

sub some_func
{
    my $count = 0;
    my $str;
    foreach $str (@_) {
        print("[$count] $str\n");
        $count++;
    }
}
some_func(@ARGV);

$ perl example_fs.pl ABCDEFG 123456 uwxyz
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[0] ABCDEFG
[1] 123456
[2] uwxyz
$

Figure 35: Alternate example program for Perl and output.

2.4.5. Vulnerability in ML
ML does not use format strings so the vulnerability is not present.

The way that ML handles formatted output is similar to Java. The string concatenation operator,
"^", can be used to build a string for output. The difference is that any string conversion
functions are not automatically called. Some example code is shown in Figure 36.

C:>mosml
Moscow ML version 2.01 (January 2004)
Enter `quit();' to quit.
- val word1 = "Hello";
> val word1 = "Hello" : string
- val word2 = " functional ";
> val word2 = " functional " : string
- val word3 = "world!\n";
> val word3 = "world!\n" : string
- print (word1 ^ word2 ^ word3);
Hello functional world!
> val it = () : unit
- val year=2004;
> val year = 2004 : int
- load "Int";
> val it = () : unit
- print (word1 ^ " " ^ Int.toString(year) ^ "\n");
Hello 2004
> val it = () : unit
- quit();

Figure 36: ML program illustrating immunity to format string vulnerabilities and output.

2.5. Vulnerability: Stack Buffer Overflow

A stack buffer overflow occurs when more data is copied into an automatic variable than the
programmer had allowed space for. The new data overwrites what was there and in the case of
the stack, this can include other variables and other data used by the microprocessor to
coordinate the calling and returning from functions. Usually, this results in the program crashing.
However, carefully crafted input can cause the microprocessor to execute alternative code. This
alternative code could be a worm that then uses the current system as a stepping-stone to the next
target. Or it could be “shellcode,” code that causes an interactive shell to be created that the
attacker can then use to whatever purpose he or she desires. The canonical description,
referenced by virtually all other descriptions of the vulnerability, is [16].

2.5.1. Vulnerability in C
Features of the C and C++ languages make this a significant problem for systems built with these
languages. The languages do not have a notion of the actual size of arrays (whether the array is
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of characters, integers or some user defined structure does not matter) but depend on the
programmer to ensure that the last byte or element is a NULL. Each byte is checked and if it is
not a NULL, the operation continues. The code in Figure 37 illustrates the problem. (This
program will crash; it is not an actual exploit.)

/*
 * Example of a buffer overflow to smash stack in C.
 * Adapted from Aleph One.
 */
#include <stdio.h>
#include <string.h>

void function(char *str) {
   char buffer[16];
   printf("\nIn function...");
   strcpy(buffer,str);
   printf("Leaving function\n");
}

int main() {
  char large_string[256];
  int i;

  for( i = 0; i < 255; i++)
    large_string[i] = 'A';
  function(large_string);
  return(0);
}

Figure 37: Example program in C illustrating a stack buffer overflow.

The call to strcpy in function continues to write data in buffer until it finds a NULL byte. It does
not matter if the buffer it is copying into is smaller than the buffer it is copying out of. In this
example, the actions of the strcpy overwrite the return address so the program crashes with a
Segmentation Fault when it tries to return to main.

2.5.2. Vulnerability in C++
For this vulnerability, C++ is the same as C.  If the sample program is passed through a C++
compiler, the program crashes for the same reason.

2.5.3. Vulnerability in Java
Unlike C and C++, the Java language includes bounds checking on its buffer operations. It is
also running on a virtual machine and the code is not aware of the host stack. This vulnerability
does not exist in Java. The program in Figure 38 is a straightforward translation of the C example
and illustrates how Java is different.
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public class Example2 {
    static void function(char [] str) {
        char [] buffer = new char[16];
        int i = 0;
        // Force ArrayIndexOutOfBoundsException
        while (str[i] == 'A') { buffer[i] = str[i]; i++; }
    }
    public static void main(String[] args) {
        char [] large_str = new char[256];
        for (int i = 0; i < 255; i++) { large_str[i] = 'A'; }
        function(large_str);
    }
}

Figure 38: Example program in Java illustrating immunity to stack buffer overflow problems.

The program in Figure 38 compiles and runs; however, it will crash with the exception
java.lang.ArrayIndexOutOfBoundsException.

2.5.4. Vulnerability in Perl
As with Java, Perl runs on a virtual machine. While Perl programs do not generate an index-out-
of-bounds exception, the Perl runtime is able to extend a string buffer to the limits of the
available memory. The vulnerability does not exist in Perl programs. The (awkward) Perl
program in Figure 39 prints out two strings of 255 “A” characters.

use strict;
use warnings;

sub function
{
    print ("Function called:", @_, "\n");
    my  @buffer = @_;
    print ("My Buffer: ", @buffer,"\n");
}

my @large_str;

for (my $index = 0; $index < 255; $index++) { $large_str[$index] = 'A'; }

function(@large_str);
Figure 39: Example program in Perl illustrating immunity to stack buffer overflows.

2.5.5. Vulnerability in ML
This vulnerability does not exist in ML for two reasons. Fundamentally, the language does not
make use of the side effects.  Rather than declare that a buffer exists with sixteen bytes or
another buffer exists for 255 characters, ML makes use of function definitions that return strings
(or lists or some other structure) of some length.

The ML Array construct includes the ability to compute by side effect. The package includes
functions that can update a cell in an array without recreating the array. As in Java, these
functions will throw a Subscript exception if called with an index outside of the range of the
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array. The record in Figure 40 of an interactive session with ML illustrates. (The responses of the
ML shell are in italics.)

- open Array;
> type 'a array = 'a array
  ...
- val A = array(16,#"A");
> val A = <array> : char array
- val B = array(32,#"B");
> val B = <array> : char array
- val i = ref 0;
> val i = ref 0 : int ref
- while !i < length(B) do (
update(A, !i, sub(B, !i));
i := !i + 1);
! Uncaught exception:
! Subscript
-

Figure 40: Example ML program illustrating immunity to stack buffer overflow problems.

2.6. Vulnerability: Heap Buffer Overflow

A heap buffer overflow is similar to a stack buffer overflow. The difference is that the
overwritten memory is not used for the stack.

The heap is memory dynamically managed at runtime. Memory is allocated and deallocated as
needed, usually from a larger pool of memory already requested from the operating system.

How heap memory is managed varies from system to system. A common approach uses meta
data near the allocated memory buffer. This meta data allows a heap manager to keep track of
which buckets are in use, which are free, and which ones can be consolidated.

By gaining control of dynamic memory, an attacker could change security flags or inject code to
alter the functioning of the system or as an alternate means of injecting shellcode on systems
where the stack is treated as not executable by the hardware.

2.6.1. Vulnerability in C
The standard C library provides routines for allocating and deallocating memory. The main
routine to be concerned with here is malloc. The malloc function returns a pointer to a buffer of
memory of a particular size in bytes.

The routines that aid in the stack buffer overflow vulnerability also come into play for this
vulnerability. These routines can be used to overflow heap buffer and change the contents of that
memory as illustrated by the following program. The example code in Figure 41 is adapted from
[8].
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/*
 * Adapted from [Viega/McGraw, 2002] Example 7-12
 */
 #include <stdio.h>
 #include <string.h>
 #include <stdlib.h>

int main(int argc, char **argv)
{
  // int             i;

char           *str = (char *)malloc(sizeof(char) * 4);
char           *super_user = (char *)malloc(sizeof(char) * 9);
printf("Address of str is: %p\n", str);
printf("Address of super_user is: %p\n", super_user);
strcpy(super_user, "viega");
if (argc > 1)

strcpy(str, argv[1]);
else

strcpy(str, "xyz");

printf("Value in buffer str: %s\nValue in buffer super_user: %s\n",
               str,super_user);

return(0);
}

Figure 41: Example program in C illustrating heap buffer overflow.

Running the code twice illustrates the issue. (See Figure 42.) The first run shows where the
allocated buffers are and their default contents. The second shows how to change the default for
the variable that is not supposed to vary.

$ ./vm_example2A
Address of str is: 0x300140
Address of super_user is: 0x300150
Value in buffer str: xyz
Value in buffer super_user: viega
$ ./vm_example2A xyz.............mcgraw
Address of str is: 0x300140
Address of super_user is: 0x300150
Value in buffer str: xyz.............mcgraw
Value in buffer super_user: mcgraw
$

Figure 42: Sample run of code in Figure 41.

If the variable "super_user" were used later in the program to validate privileges for the current
user, Mr. McGraw could gain root access.

2.6.2. Vulnerability in C++
Although C++ includes additional means for dynamic memory management, the above code is
still legal in a C++ program. The general vulnerability is therefore still present.
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2.6.3. Vulnerability in Java
The Java programmer does not have direct control of the memory management of the program.
This eliminates the problem for a Java program. Additionally, as was the case for the stack buffer
overflow, the Java runtime includes automatic bounds checking. An attempt to overflow a Java
string or array would generate an ArrayIndexOutOfBounds exception.

As noted in [9, p. 291], many Java virtual machines are written in C and could therefore have
these problems. This is not, however, a fault of the language itself.

2.6.4. Vulnerability in Perl
Perl does not give the programmer direct control of memory allocation and deallocation
therefore, as with Java, this attack tactic is not useful against a Perl program. The example in
Figure 43 is patterned after the example used for C and illustrates the result.

use strict;
use warnings;

my $str;
my $super_user = "viega";

if (@ARGV) {
    $str = $ARGV[0];
} else {
    $str = "xyz";
}

print("Value in buffer str: $str\nValue in buffer super_user:
$super_user\n");

Figure 43: Perl program illustrating immunity to heap buffer overflows.

Running the program (see Figure 44) shows how Perl simply allocates the needed memory for
the programmer.

$ perl example2A.pl
Value in buffer str: xyz
Value in buffer super_user: viega
$ perl example2A.pl xyz.............mcgraw
Value in buffer str: xyz.............mcgraw
Value in buffer super_user: viega
$

Figure 44: Example output of Perl code in Figure 43.

2.6.5. Vulnerability in ML
Memory management in ML follows the pattern seen in Java and Perl. The programmer does not
have explicit access to the memory management, which makes the heap overflow tactic of
limited value.

The non-imperative style used by ML also limits the usefulness of the tactic. Suppose a function
were used to grant extra privileges to a process if the user running it was "viega" and that this
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value were bound to the name "super_user." The value of super_user at the time of the definition
of the privilege granting function would be the value used regardless of how a later phase of the
computation might change it. The environment in place when a function is defined is the one
used when it is evaluated later.

2.7. Vulnerability: Java Inner Classes

This vulnerability comes about from the Java implementation of object-oriented programming.
The other languages in the study either do not support an object-oriented paradigm or do not
have this problem. Disagreement exists over whether the issue of Java inner classes constitutes a
real vulnerability or that they are actually a logical part of the object-oriented paradigm.

2.7.1. Vulnerability in Java
The feature of inner classes in Java that causes concern is that the access modifiers for the
members of the outer class appear to be changed when an inner class is used. A private member
is given a package scope. This change breaks the meaning of the access modifier and enables the
possibility of undesirable access to private class members.

The Java language specifies that inner classes be treated just like other members of a class. The
problem arises because the Java Virtual Machine (JVM) does not directly support inner, or
nested, classes. All classes exist as distinct class files that are loaded at runtime. A way is needed
to be able to give the appearance that the inner class is a member of the outer class.  The method
that the Sun compiler uses is not to actually change the access modifier of members, but to create
special, static access methods in the outer class that the inner class may use and to insert a
member into the inner class to serve as a reference to the outer class.

The example in Figure 45 shows a class that uses an inner class to manipulate private data.

public class Flag
{
    class InnerFlag {
        public void incFlag() { flag++; }
        public void showFlag() {
            System.out.println("The hidden flag is " + flag);
        }
    }
    public Flag(int flag) {
        this.flag = flag * 5;
    }
    private int flag;
}

Figure 45: Example of the Java inner classes issue.

The Java disassembler, javap, shows how the outer and inner classes are changed to allow the
inner class to function as shown in Figure 46.

$ javap -private Flag
Compiled from "Flag.java"
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public class Flag extends java.lang.Object{
    private int flag;
    public Flag(int);
    static int access$008(Flag);
    static int access$000(Flag);
}

Figure 46: Disassembler output outer class from program in Figure 45.

The byte code for the Flag class shows two extra static methods. They are the package scope
methods that the InnerFlag class will use. (Such methods are added only for members that the
inner class uses.) Figure 47 shows the same disassembly for the inner class.

$ javap -private Flag\$InnerFlag
Compiled from "Flag.java"
class Flag$InnerFlag extends java.lang.Object{
    private final Flag this$0;
    Flag$InnerFlag(Flag);
    public void incFlag();
    public void showFlag();
}

Figure 47: Disassembler output for inner class of program in Figure 45.

In the InnerFlag class, an extra member has been added to provide a reference to the instance of
the outer class. This reference is the argument passed to the added access methods in the outer
Flag class.

The private member of the Flag class is still private, but the compiler has provided package
scope methods to access this private data. Theoretically, another class in the package could use
the same method. While the Sun compiler does not allow a call to such a class method, e.g.
Flag.access$000, another compiler could be altered to do so. Since the JVM does not directly
support inner classes, how would the runtime know the difference?

2.7.1.1 Vulnerability or Orthogonality?
Whether inner classes represent a potential vulnerability or indicate that Java treats class
members orthogonally is an open question. The answer would depend on the questioner's point
of view.

The access modifiers in Java can be viewed as advisory aids in the development of software and
not as aspects of software security. Java programs run without a security manager (without the
sandbox) can change access modifiers and the values of the members associated with them using
Reflection. This is how many IDEs do their work. A security perspective would want access
specifiers enforced consistently. Which point of view is best depends on the conditions under
which the question is asked [17].

2.7.2. Vulnerability in C
The C programming language does not support an object-oriented approach. An object-oriented
paradigm can be used, but that requires great discipline on the part of the programmer.
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2.7.3. Vulnerability in C++
C++ also allows for inner, or nested, classes. However, these classes are not automatically
allowed any special access to the methods and fields of the encompassing class. The behaviors of
public inner classes in Java can be replicated in C++ if the programmer chooses to do so.  An
inner class can be made a “friend” of the outer class. Classes in other packages, or namespaces,
would also have to be declared as friends.

One point of view on the issue is that C++ is being less orthogonal than Java by not treating all
members of a class the same way. A security point of view would appreciate the consistency of
the meanings of access modifiers. Which is right depends on the particulars of a situation.

2.7.4. Vulnerability in Perl
Perl is a special case. Objects can be created, manipulated, and used in Perl programs, but object
orientation is enforced by the programmer. All members of a class are still accessible through the
module symbol table. The Perl runtime does not enforce encapsulation. Programmers are
expected to have good manners and not require that the runtime environment act as an enforcer.
Information hiding is possible by judicious use of lexical scoping and closures, but this is
developer choice and not an imperative of Perl object-oriented programming.

Even without strict adherence to the rules of encapsulation, the features of Perl do make the
language amenable to an object orientation.

2.7.5. Vulnerability in ML
ML has a module feature that plays the role that classes and  objects have in other languages.
ML modules are constructed from structures, signatures, and functors.

Structures can be thought of as simple objects. These objects are built from types, functions,
exceptions, and other elements. A structure alone can be used as an object, but ML provides an
additional means of encapsulation using signatures.

A signature is a definition of an interface. This interface is the public image that a structure will
present to other classes. Classes that use the signature will not know what other elements are
present in the structure.

Functors are a mechanism used for building new versions of structures. A functor accepts a
structure as input and returns a new, modified structure. Functors fill a role similar to templates
in C++.

The signature feature of ML prevents the problem found in the implementation of Java inner
classes. Elements of a structure not present in the signature are not visible to other classes. In
addition, ML does not have the notion “friend” as in C++; if a different interface were required
for some class, an additional signature would need to be created.
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2.8. Vulnerability: Class Comparison By Name

This vulnerability is from a family of vulnerabilities termed "mix-and-match" [12]. The problem
is that an object that is part of a larger system can be replaced by an attacker and provide
behaviors other than what the original developers had planned. Checking an object by using its
name instead of using the runtime type information makes a mix-and-match attack easier.

This particular form of the vulnerability is particularly dangerous for programming language
environments that attempt to handle mobile code. In the set of languages used for this study, only
Java and Perl have direct threats to address. The other languages can have a similar issue if the
environment supports some form of dynamic linking. Dynamic libraries are supported in
Windows and many Unix systems.

If an environment variable is used for a search path to the dynamic library, that can be reset to
have the library loaded from a different location. Environment variables can also be part of a
malicious input attack. Vulnerabilities can be combined.

2.8.1. Vulnerability in C
The C language does not directly support the concept of an object.  A mix-and-match attack
against a system written in C would require that the system use a form of dynamic linking.
Shared libraries in HP/UX provide a good illustration of the uses, and possible abuses, of
dynamic linking.

HP/UX allows a program to specify a search path for shared libraries. This allows the location of
the library to change, for example, from one release of the OS to another, without requiring that
the program be rebuilt. This feature could also be used by an attacker. By changing the value of
the environment variable used by the program, a different, malicious, version of a shared library
could be substituted for a legitimate one. The feature is useful, but must be used with care.

2.8.2. Vulnerability in C++
Although an object-oriented language, C++ does not insist on a single root object the way Java
does. C++ does not have an equivalent to the Java Class object that can be retrieved for all
objects in the system. Therefore, unlike Java, C++ programs do not have a standard, default way
of doing a comparison of a class by name. Any program that needed such a capability would
require a custom implementation. A poor implementation might not result from issues relating to
the programming language.

Systems written in C++ can make use of any dynamic libraries found in the host environment
and have the same set of problems as systems written in C. Using the dynamic_cast keyword
would not detect that a derived class of the base class was not the expected class, i.e. that a new
malicious class derived from the same base class had been substituted for the legitimate derived
class.
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2.8.3. Vulnerability in Java
Every object in Java inherits from a root object called Object. This root object contains methods
that allow for the retrieval of a Class object for each class. This Class object contains
information about the class, including what type of object it is as well as its name. The problem
with using the name is that the object gets to decide what that name is. An object can lie. An
object cannot hide its type. By comparing the expected type instead of current name, the system
has more control over the objects it uses. Figure 48 is the example from [12].

Wrong way:
if(obj.getClass().getName().equals("Foo")) // Wrong!
// objects class is named Foo
}else{
// object's class has some other name
}

Right way:
if(a.getClass() == b.getClass()){
// objects have the same class
}else{
// objects have different classes
}

Figure 48: Code fragments illustrating problem of class comparison by name in Java.

2.8.4. Vulnerability in Perl
Object-oriented programming in Perl is based on the Honor System. The Perl runtime does not
enforce encapsulation. (Although a programmer can simulate it with judicious use of lexical
scoping and closures.) Perl also does not mandate one root object that all objects can have in
their inheritance tree. What it does provide is a UNIVERSAL object that will always be part of
the method lookup process. This object contains similar methods to those employed by Java.

The UNIVERSAL object has two methods: isa and can. The first is passed an object name and
the method returns true if the name matches that of the invoking object, that is, the object "is a"
type of that name. The latter is passed a name of a method and returns true if that method is part
of the object, that is, it "can" call that method name. The code snippets in Figure 49 that illustrate
these universal methods are from [6].

$fh = FileHandle->new();
if ($fh->isa("IO::Handle")) {
    print "\$fh is some sort of IOish object.\n";
}

if ($invocant->can("copy")) {
    print "Our invocant can copy.\n";
}

Figure 49: Perl code fragments illustrating class comparison by name.
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This may look like Perl is making the same error as Java, but the names in question are not those
provided by the object, but are the names stored in the symbol tables used by Perl to keep track
of things.

2.8.5. Vulnerability in ML
Although many of the features of an object-oriented language can be created in Standard ML, the
language  is not formally object-oriented. The issues of the mix-and-match family of
vulnerabilities are fundamentally about not using the type information correctly. The ML
language is strongly typed and should not have this problem. As with C and C++, however, the
underlying environment could allow for substitution of dynamically loaded libraries.

2.9. Vulnerability: C++ Virtual Pointer Exploit

The C++ Virtual Pointer (VPTR) exploit builds upon the basic stack buffer overflow exploit. It
is, however, much more narrowly focused than the general exploit. The exploit described in [18]
only relates to the GNU C++ implementation for Linux running on the Intel IA32 platform.

As noted above, Java, Perl, and ML are not susceptible to stack buffer overflow attacks. In
addition, implementations of these languages do not store objects on the stack, but use the heap.
The techniques used by these languages to manage the heap also make these languages immune
to this type of attack.

2.9.1. Vulnerability in C++
Object-oriented programming includes the idea of polymorphism. Polymorphism allows a class
to reuse a name of a method that exists in one of its parent classes. The appropriate method is
determined at runtime by dynamic binding, as opposed to static binding, which can be done at
compile time. A C++ program can identify a method as a virtual function by keyword as shown
in the sample program in Figure 50 from [18].
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#include <stdio.h>
#include <string.h>

class BaseClass
{
    private:
        char Buffer[32];
    public:
        void SetBuffer(char *String)
        {
            strcpy(Buffer,String);
        }
        virtual void PrintBuffer()
        {
            printf("%s\n",Buffer);
        }
};

class MyClass1:public BaseClass
{
    public:
        void PrintBuffer()
        {
            printf("MyClass1: ");
            BaseClass::PrintBuffer();
        }
};

class MyClass2:public BaseClass
{
    public:
        void PrintBuffer()
        {
            printf("MyClass2: ");
            BaseClass::PrintBuffer();
        }
};

void main()
{
    BaseClass *Object[2];

    Object[0] = new MyClass1;
    Object[1] = new MyClass2;

    Object[0]->SetBuffer("string1");
    Object[1]->SetBuffer("string2");
    Object[0]->PrintBuffer();
    Object[1]->PrintBuffer();
}

 Figure 50: Sample code showing C++ VPTR exploit.

The two "MyClass" definitions inherit from a common base class that provides two methods.
One is static while the other is marked as "virtual." Each "MyClass" defines a new
implementation of the virtual function. When these definitions are used to create objects in the
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program, the compiler is able to setup the call to the SetBuffer function statically, but it must
setup dynamic binding for the calls to PrintBuffer. The created objects contain pointers into a
table of function pointers. These virtual pointers (VPTRs) are used to find the correct method to
call.

The vulnerability comes about from the way the GNU C++ compiler implements the dynamic in
combination with the faulty usage of the strcpy library call in SetBuffer. The VPTR is located on
the stack above the object and if the call to "SetBuffer" can be passed an arbitrary string, the
VPTR could be overwritten to point to code supplied by the attacker.

The exploit requires more conditions than the standard stack buffer overflow and these
conditions are likely rare. (The paper by Rix [18] includes additional possibilities that are even
more rare.)  It is important to note as an illustration that simply using objects does not necessarily
imply safe code.

2.9.2. Vulnerability in C
Standard C does not support objects, but it does include pointers to functions and the calling of
functions by address. Idioms that take advantage of this could suffer a similar attack.

One approach to selecting one function from a set of possible functions, all with the same
signature, is to build a dispatch table that includes a pattern to select by along with the address of
the function to call. The code that looks up the pattern and then calls the function is simple and
compact. If the dispatch table were located within reach of one of the library calls known to
overflow, the address of the function called could be overwritten.

2.10. Vulnerability: Pointer Subterfuge

Some security-after-the-fact techniques are in use to counter the stack buffer overflow
vulnerabilities in existing code. Two of these are StackGuard and StackShield. (A third tactic
will be address in the section on arc injection.) Each attempts to detect a stack overrun.
Unfortunately, while these tactics can provide some basic protection, neither can resist a
persistent attack against a vulnerable program.

2.10.1. The StackGuard Canary
StackGuard, according to [19], uses the technique of placing a extra word, called a canary after
the old tactic of using a canary to detect toxic gases in mines, next to the return address. The
basic stack buffer overflow rewrites the return address of a function by overwriting bytes in the
stack so in order to overwrite a canary protected return address, the canary must also be smashed.
The function call prolog creates the canary and the epilog checks it. If the check fails, the
program is terminated.

Two types of values are used for the canary. The first, a "terminator," is just the four bytes
0x000d0aff. These are a NULL, carriage return, line feed and end-of-file. If an attack attempts to
spoof the canary in the overflow, one of these characters should cause a string operation to
terminate. The second is termed "random." It is a randomly generated number. This number only
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needs to be random enough to make prediction difficult. (It does not need to be cryptographically
strong.)

2.10.2. The StackShield Return Address Copy
StackShield takes a different approach. Rather than add to the existing stack format, it copies the
return address to a separate stack. The function call epilog compares the return address in the
stack with the copy.

Bulba and Kil3r in [19] show how each stack overflow counter measure can be overcome.

2.10.3. Vulnerability in C
The example pointer subterfuge attacks are designed only for a Linux system running on an Intel
IA32 platform.

2.10.3.1 Attack Against StackGuard
The authors of [19] use the program in Figure 51 to illustrate their techniques.

int f (char ** argv)
{
        int pipa; // useless variable
        char *p;
        char a[30];

        p=a;

        printf ("p=%x\t -- before 1st strcpy\n",p);
        strcpy(p,argv[1]);        // <== vulnerable strcpy()
        printf ("p=%x\t -- after 1st  strcpy\n",p);
        strncpy(p,argv[2],16);
        printf("After second strcpy ;)\n");
}

main (int argc, char ** argv) {
        f(argv);
        execl("back_to_vul","",0);  //<-- The exec that fails
        printf("End of program\n");
}

Figure 51: Program illustrating the pointer subterfuge attack.

The program illustrates the characteristics that must exist in a vulnerable program for
StackGuard and StackShield protections to fail.

1. A pointer such as p must be located next to a buffer such as a.
2. A misused library routine that can execute an overflow into p. In the example, this is

strcpy.
3. A second copy function that uses p as the address of the buffer to write without p having

been initialized.
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This may seem like an odd set of requirements, but [19] report just such a bug in a version of
wu-ftpd.4

The tactic is to use an overrun on the pointer p to have it point to the address of the function
return address on the stack. Then use the following copy function to overwrite the function return
address.

The authors of [19] provide some shellcode that illustrates their exploit under Linux. That code is
not reproduced here.

2.10.3.2 Attack Against StackShield
The tactic described above would not work against StackShield. The change in the return address
would be detected and program execution halted. However, having demonstrated the ability to
write to any particular address, an attack on a StackShield protected program would change the
value in the pointer variable p to such that it will overwrite a function address in fnlist, the list of
functions called when a program terminates by calling the library routine exit.

2.10.3.3 Changing libc Addresses
The paper illustrates another way to attack these protections. If the pointer p can point anywhere,
why not change the address of the printf function to that of the system function? This is a variant
of the return-to-libc attack and will be a key part of the arc injection exploit.

2.11. Vulnerability: Arc Injection

Another approach to preventing stack buffer overflow exploits is to make the stack itself not
executable. The standard stack buffer overflow flows its malicious code into the stack and
changes the return address of the function to point to this injected code. By making the stack
non-executable, the general case is foiled. The arc injection technique is a counter to the non-
executable stack counter measure. It still requires, however, a vulnerable program that misuses
one of the C library functions that do not do bounds checking.

As with the pointer subterfuge attack, the arc injection attack is much more narrowly focused.
The description of the attack in [20] applies GNU C (and C++) under Linux on the Intel IA32
platform. The author of the paper, however, claims that the general technique can work on any
system that uses the GNU C calling convention and the ELF (Executable and Linking Format)
specification for the format of executable files. The exploit can be attempted on Solaris i386 and
FreeBSD in addition to Linux.

The arc injection attack is a variation on the stack buffer overflow vulnerability. Because Perl,
Java, and ML do not suffer from this vulnerability, programs written in these languages are not at
risk of this vulnerability.

                                                
4 Bulba and Kil3r name the vulnerability the "wu-ftpd 2.5 mapped_path bug."
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2.11.1. Vulnerability in C
The arc injection technique builds upon the return-to-libc tactic. The basic idea is that rather than
insert the code to execute into the stack and run it there, the stack is manipulated to change the
flow of control to call functions, usually the library function system, to perform the exploit. The
diagram  in Figure 52 from [20] of a hypothetical stack illustrates the idea.

<- stack grows this way
   addresses grow this way ->
------------------------------------------------------------------
| buffer fill-up(*)| function_in_lib | dummy_int32 | arg_1 | arg_2 | ...
------------------------------------------------------------------
                          ^
                          |

- this int32 should overwrite saved return
- address of a vulnerable function

(*) buffer fill-up should overwrite saved %ebp placeholder as well, if
the latter is used

Figure 52: Diagram illustrating basic return-to-libc exploit.

The library call function_in_lib is the address that the vulnerable function returns to. When it
starts executing, the dummy_int32 is in the place of the return address for the library function and
arg_1, and so on, are its arguments. That the program that executes the shell code will crash if
the dummy_int32 value is meaningless is not important to the attacker.

An advance of the technique is to make use of the dumy_int32 position. Instead of just inserting a
dummy address, the position is used to invoke another library routine. These can be chained in
order to call more than one library function.

The reason this technique might be needed for a successful attack is that many programs
designed to run from a privileged user ID can change the effective ID of the process to one of
little or no privileges. The chaining of calls to libc functions can give back the privileges before
executing the shellcode. Attackers want to create a shell with root privileges; getting a shell
running as "nobody" does not help the attacker much.

2.11.1.1 Finding Injection Points
Crafting an arc injection attack requires detailed knowledge of the calling sequence on the target
platform, in this example, Intel IA32. The attacker needs to disassemble the target program and
look for patterns in the assembly instructions. Depending on the findings, a different tactic can
be used.

Some optimizations by the GNU C compiler (-fomit-frame-pointer) will change how the frame
pointer is handled in the calling sequence epilog. The pattern will look something like Figure 53.

eplg: addl $LOCAL_VARS_SIZE, %esp
ret

Figure 53: Pattern indicating a program vulnerable to an arc injection attack.
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This allows for chaining of library calls. The diagram in Figure 53, from [20], illustrates.

<- stack grows this way
   addresses grow this way ->
---------------------------------------------------------------------------
| f1 | eplg | f1_arg1 | f1_arg2 | ... | f1_argn| PAD | f2 | dmm | f2_args...
---------------------------------------------------------------------------
 ^          ^                                        ^
 |          |                                        |
 |          | <---------LOCAL_VARS_SIZE---- ------->|
 |
 |-- this int32 should overwrite return address
     of a vulnerable function

Figure 53: Diagram showing how arc injection would effect the stack.

The "PAD" is some number of non-zero bytes to make the number of bytes come out to match
LOCAL_VARS_SIZE.  When the function returns from f1, the eplg code changes the stack to
point to the beginning of the call to f2 with its arguments.

The Nergal paper also includes patterns to look for in programs that are not optimized to omit the
frame pointer as well as additional cases susceptible to an arc injection attack. The paper also
includes extensive sample code illustrating the attack.

The point for the purposes of this paper is not the actual techniques themselves, but that after-
the-fact security patches are extremely difficult. The arc injection and pointer subterfuge attacks
illustrate just how hard, and how likely to fail, any after-the-fact strategy actually is. A software
system created with vulnerabilities remains vulnerable.

3. Conclusions

3.1. Programming Languages as Tools

Different programming languages present different challenges to secure coding, but no
programming language is completely secure. Table 3 summarizes the results of the analysis.
Each language in the study is at risk for some of the vulnerabilities reviewed.  No programming
language is at risk from all of the potential vulnerabilities.
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Table 3: Summary of results.

Vulnerability/Language C C++ Java Perl Standard
ML

Race conditions Yes Yes Yes Yes Yes
Malicious input Yes Yes Yes Yes Yes
Integer overflow Yes Yes Yes No No*
Format string vulnerabilities Yes Yes† No No No
Buffer overflow on the stack Yes Yes No No No
Buffer overflow on the heap Yes Yes No No No
Java inner classes No No Yes Yes No
Class comparison by name‡ No No Yes Yes No
C++ virtual pointer exploit No Yes No No No
Pointer subterfuge Yes Yes No No No
Arc Injection Yes Yes No No No

*ML throws an exception for integer overflows.
†When using C libraries.
‡Most significant for mobile code but any language that uses dynamic linking can also have a problem.

These results indicate that the security requirements of the system must be considered before the
software construction can begin.  A system with strong security requirements should be built
with a programming language that creates fewer potential problems for the developers. These
criteria when combined with other requirements such as the speed of execution or ease of code
generation can result in better choices for implementation languages. Any programming
language can be misused; any programming language can be used to create insecure software.

A Programming language such as C  might appear to be insecure from this analysis; however,
this would be an overstatement of the problem. What this analysis means is that, as with any tool,
the results of using these programming languages  depend on the skill with which they are used.
Using C implies additional coding risks that need to be addressed.

An object orientation in the language does not help much with security issues. Some of the risks
of using C are mitigated in C++ by using the newer, object oriented I/O classes. But some
implementations of C++ bring their own unique hazards as shown by the VPTR attack.

Java programs might execute more slowly than a similar program written in C or C++, but by
using a virtual machine that incorporates security conscious features, Java helps the coder write
more secure code; although care must be taken if the system uses inner classes.

The taint mode and Safe module features of Perl are a great benefit to a secure system. If the
system can accept the interpreted, and thus slower, execution speeds, Perl would be an excellent
choice.

In the analysis of these vulnerabilities, Standard ML is the most inherently secure programming
language. However, ML is not widely used in industry and the lack of vulnerabilities in such
systems could be because not enough people have tried attacking them.
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The people who plan and develop software systems can not ignore the security implications of
programming language choice. If the choice is to use a language such as C because speed of
execution is important, then it is a necessity that additional tools, such as static code analysis
tools, be acquired. Extra time to use these tools must be allocated. As shown by the pointer
subterfuge and arc injection attacks, trying to graft security onto insecure systems is extremely
difficult. The results of this study provide data supporting the argument that code security must
be built-in from the beginning.

3.2. Change is a Constant
Programming languages continue to change over time. Sun Microsystems released a new version
of Java after work on the paper started. Rather than halt the work on the paper and risk getting
bogged down in learning the new features, the research was limited to the version of Java that
existed as a stable release at the time of the start of the research. Perl is also rumored be
undergoing a new release cycle soon. These changes in the programming languages could
change some of the results.

3.3. Suggestions for Future Research
The list of vulnerabilities used for this paper is not exhaustive. There are others. The analysis
could be expanded to include these additional vulnerabilities.

The selection of programming languages is also not exhaustive. Programming languages such as
C#, Visual Basic, Python, JavaScript, or PHP could be analyzed for risks associated with these,
or other, vulnerabilities.

Finally, code analysis tools, such as [21, 22, 23] are becoming available in academic and open
source settings. These could be investigated for their effectiveness in detecting the vulnerabilities
mentioned in this paper. We might also wish to research how much effort would be required for
an automated tool to detect particular vulnerabilities.
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