Proposal for: Implications of

Programming Language Selection

On the Construction of Secure Software Systems

Craig E. Ward

CMSI 601 Graduate Seminar, Fall 2004

1 Introduction

Software systems play an increasingly large role in society. The range of software systems spans the spectrum from fun and games to mission and life critical applications. Software is everywhere.

Building these systems is difficult. Designing and building a system that will function as its creators intend is hard. Designing and building a system that will satisfy its users' needs is harder. Additionally, the complexity of the interactions between systems and users creates a new area of concern. This is the area of software security.

Many resources and tools are required when building a software system. A programming language is one of the key elements of that mix. The programming language chosen for a system has a direct effect on how a system is to be created and what means must be used to ensure not only that the system functions as expected, but that it is secure and does not function in unexpected ways.

The proposed paper will explore the issue of system security from the standpoint of some popular programming languages. What additional pitfalls come with the choice of a particular language? What benefits can a system creator gain by choosing another language? Can a change in the programming language itself make that language a better choice than it would be otherwise?

2 Motivation

Programming languages come in several varieties and styles within two broad categories. The categories are Declarative and Imperative.
 These categories differ in how each type approaches an algorithm.

Declarative languages approach an algorithm by defining what the algorithm is to accomplish. Imperative languages approach an algorithm by defining how the algorithm is to be performed.

The categories can be subdivided into families of languages. One language can contain features that are characteristics of other types or styles of language. Languages can translate their code into machine languages that can execute directly on the host hardware. They can translate their code into intermediate code that executes on a virtual machine independent of the host hardware. Scripting languages interpret their code into executable code on the fly.

A lot of work is available concerning standards for coding secure software systems. These standards cover features of a programming language that can, if misused, allow for insecure operation of the software. The misuse of one of the features does not violate either the syntax or semantics of the language but does create a vulnerability that can then be exploited by an attack.

3 Approach

This research paper proposes to examine five languages to find what are the most common coding mistakes made by programmers using that language. Each potential exploit will be described including how the other included languages either also are susceptible to the security flaw or how they are not. For languages that are susceptible, suggestions will be made for possible changes in the language itself to make it less susceptible.

After examination of the vulnerabilities, the languages will then be ranked on a scale that indicates the relative ease with which secure code can be written. Some language styles may lend themselves more easily to the security needs of an application than others.

The languages are:

	Language
	Description

	C
	A traditional imperative language. C is one of the most popular languages in general production.

	C++
	An object-oriented imperative language with roots in C.

	Java
	An object-oriented imperative language that runs byte code on a virtual machine.

	Perl
	An interpreted, imperative language widely used for system administration and web applications. Perl is a complex and extremely flexible language.

	Standard ML
	A declarative language that uses evaluation of functions as its primary mode of computation.

This mix of languages should provide a mix of approaches from which a useful set of comparisons and contrasts on the security implications of a language type can be made. This will have useful implications. Knowledge of the security vulnerabilities of a language choice allows for a better understanding of the trade-offs when choosing an implementation language for a software system.

� All statements about categories of programming languages are from Michael L. Scott, Programming Language Pragmatics (San Francisco: Morgan Kaufmann Publishers. 2000) pp. 5-7.

Craig E. Ward
Page 2
9/11/04

