Status Report 11 October 2004

CMSI 601 Fall 2004

Craig E. Ward
This is a summary of the status of the project Implications of Programming Language Selection on the Construction of Secure Software Systems.

I have created an annotated bibliography of source material. These sources include books on software security and papers published in IEEE Computer Society and ACM journals and magazines as well as some “nontraditional literature.”
 

Readings so far have concentrated on the buffer overflow, both stack smashing and heap smashing, attacks that systems which use C and C++ are prone to have. I have, however, identified additional vulnerabilities that are the result of poor coding. These are:

	1. Buffer overflow on the stack
	2. Buffer overflow on the heap

	3. Integer overflow
	4. Malicious input

	5. Format string vulnerabilities
	6. Java inner classes

	7. Class comparison by name
	8. Pointer subterfuge

	9. Arc Injection
	10. Exception Handler high jacking

	11. Race conditions
	


I intend to describe each of the vulnerabilities with this format:

· Name

· Attack pattern description

· Example code illustrating the vulnerability

· For each language not used as the illustrative example, provide a discussion of how the language either does or does not make the error more difficult to implement.

I have also found interesting similarities and differences between the Java security environment and the Perl virtual machine with “taint” mode. Each approach attempts to limit the damage that could be done by untrusted data and code.

The next steps are to complete the descriptions of each of the vulnerabilities and analyze for possible changes in each language.

� See sidebar “Nontraditional literature on buffer overruns” in Beyond Stack Smashing: Recent Advances in Exploiting Buffer Overruns by Jonathan Pincus and Brandon Baker in IEEE Security & Privacy, July/August 2004, p. 26.



Craig E. Ward
Page 1
10/11/04

