Craig E. Ward

CMSI 688 Object Technologies

Fall 2002

Instructor: Munir Samplewala

Design Patterns Exam Answers

Question 1

a) UML, Unified Modeling Language, is a symbolic modeling language used to describe requirements and designs of object oriented software systems.

b) Aggregation is a “part-of” relationship. One object is part of another object.

c) Association is a relationship between instances of two classes.

d) A Stereotype is a way to modify or add clarity to a symbol or relationship. It is the built-in extension mechanism of UML.

Question 2

a) A Design Pattern is an abstraction of a recurring form that occurs in a non-arbitrary context.

b) An idiom is an expression of a design pattern in a particular language or context.

c) The purpose of a design pattern is to define a best-practice solution to a particular problem in context, to share experience and teach new practitioners.

Question 3

a) The Adapter Pattern can be used to modify the interface of a class to match the expected interface. In Java, the needed methods of the interface can be defined as an interface and the class in question can then be extended in a derived class that implements the new interface. Assumptions:

i. The class source is not be changed.

b) The Façade Pattern can be used to simplify the interface to a set of complex classes. A set of simpler-to-use classes encapsulate the functionality of the underlying complex components. Assumptions:

i. The risk is that the functionality of the complex components could be restricted is acceptable.

c) A client object can communicate with a target object for which it has no direct access through an object representing the Proxy Pattern. The proxy presents a similar interface to the client and can pass the method call on to the target. Assumptions:

i. The proxy needs to do some initial validation of the data to be passed

ii. The target class has access restrictions so the access rights of the client for the target object must be checked.

iii. The target class, if used, will take significant resources from an underlying network.

d) The interaction of the objects can use the Observer Pattern. The depending classes can register their interest with the single object and receive notice when that object changes. Assumptions:

i. The single object of interest implements a method that can send the notification.

ii. The objects effect a user interface.

e) A Mediator Pattern would support the interactions between groups of intercommunicating objects without incurring the problems of tightly coupling the groups of objects. The mediator object is the only object that “knows” about all the varieties of communication going on. Assumptions:

i. The mediator object is not in danger of being starved for resources.

f) A Factory or Abstract Factory pattern can be used to create concrete instances of objects or groups of related objects. The factories create objects depending on input criteria at runtime so there is not need to know ahead of time which concrete class or group of classes is needed.

g) The Singleton Pattern allows a system to limit the number of instances of a class. The constructor for a Singleton is marked as private and is only accessed within the class itself. A static method is used to create a concrete instance of the object and it may check to insure that the limit is not exceeded. Assumptions:

i. The resource implemented as a Singleton does not become a bottle-neck that limits the effectiveness of the system.

h) The Builder Pattern is used to create a complex object from several possible configurations. Like a Factory, a Builder decides on the composition of the object at runtime.

i. The object to be built is not a simple class (or Factory would be a better pattern)

ii. The object to be built is part of a user interface.

Question 4

a) The Singleton Pattern should be used.

[image: image1.wmf]
[image: image2.wmf]
b) Use an Abstract Factory pattern to return the kind of objects appropriate for the platform.

[image: image3.wmf]
c) Use the Command Pattern to assign the relevant functions to each control. Have the control call its Execute method when selected.

[image: image4.wmf]
d) Define a Template class with the methods of the interface defined and use it in your code to reference the data source. Use a Factory to then create the data source and return it as an object of the Template.

[image: image5.wmf]
e) A Proxy could be setup for the client that hides the details of the communication from the client and provides the same interface as the requested service.

[image: image6.wmf]
f) You could use a combination of the Builder and Decorator patterns. Use a Builder to accept the user preferences and to use them to create an output class that contains the appropriate combinations of decorators for the desired output.

[image: image7.wmf]
Ward, Craig E.
Page 3 of 4
12/10/02

