
Craig E. Ward Page 1 7/3/05

Implications of Java Data Objects for Database
Application Architectures

Craig E. Ward
CMSI 698 SS:Advanced Topics in Database Systems

Loyola Marymount University, Spring 2004

Abstract

This paper surveys the various technology choices regarding database

connectivity using Java. After providing an overview of these technologies,

summaries of previous research into efficiency issues of implementations and

architectures are discussed. Conclusions regarding the balance between various

architecture choices are made.

1 Introduction

The set of technologies comprising the Java programming environment provides

multiple approaches to programmatic access to database systems. The number of possible

choices and how they may be combined increases year-to-year. All of these approaches

cannot be equally appropriate for all database systems. A full-scale, enterprise-

encompassing system would be too much for a simple, low volume database while a

simple application could become unacceptably slow or fail under the stresses of high

volume or multiple accesses. Choosing an approach depends on the requirements of the

particular database system in question.

Java technologies allow for relatively simple, direct access to the database using the

Java Database Connectivity (JDBC) API either by direct use of the API or the direct

embedding of SQL code using the SQLJ wrapper. The Enterprise Java Beans (EJB) of

Java 2 Enterprise Edition (J2EE) and the more recent Java Data Objects (JDO) provide

the ability to create n-tiered architectures. There are also two kinds of EJBs. Entity beans

represent objects or records that need to persist in a database and Session beans that only

exist during the life cycle of one transaction or session of an application. Entity beans

also have a choice of methods for persisting records to the database.

This paper provides an overview of the Java technologies for web applications and

database access. It next reports on the experiences of other researchers concerning the

Craig E. Ward Page 2 7/3/05

performance of these technologies. A particular emphasis for the paper is how the newer

JDO changes the balance between direct JDBC calls and a tiered EJB approach.

2 Motivation

The creation of the World Wide Web has added the problem of incorporating a

database system into multi-tiered applications. Where at one time a user might use an

application that ran on the same physical machine as the database itself, users now must

be able to run applications and perform useful work with the applications and databases

separated, sometimes by great geographic distance. Applications may run the gauntlet of

a low volume of transactions, such as a library providing access to its card catalog, to

high volume direct sales engines such as Amazon or eBay. Java technologies provide an

excellent means for creating web applications in these ranges.

 System designers in the Java realm can choose between Java servlets and Java

Server Pages (JSP) for the front end of an application. A servlet is a program that runs in

a container as part of an application server. Similarly, a JSP is also a servlet. The

distinction comes from how they are written. A servlet could be thought of as having

HTML embedded in Java code while a JSP is HTML with embedded Java code.

Servlets and JSPs can use the JDBC API directly or they can access a back end of

EJBs. The designer must then choose between Container Managed Persistence (CMP) or

Bean Managed Persistence (BMP) for any Entity EJBs. Back end containers that support

the JDO API are now becoming available and provide another option. The tradeoffs and

balances will be examined after each of the technologies is reviewed.

The growing number of combinations of these technologies presents an interesting

problem. Which technology or combination of technologies is best for any particular

application?

3 Background Work

JDO technology is a relatively recent addition to the “Java suite.” Most of the

material currently available focuses on the balances between using JDBC directly or

EJBs in a container. The issue of CMP vs. BMP for any EJBs has also been researched.

How the market will respond to JDO technology is still an open question.

Craig E. Ward Page 3 7/3/05

(Eisenberg and Melton, 1998) describe the SQLJ standard and illustrate how it can be

used to embed SQL code directly into Java code. SQLJ is a wrapper around JDBC and is

similar to other embedded SQL systems.

(Salo and Hill, 2000) provide a comprehensive comparison of using EJBs in various

combinations of servlets and JSP pages. (Tost, 2000) discusses the benefits of using Java

Beans (an embeddable object not related to the later EJB standard) and EJBs together.

The performance and scalability of J2EE applications is addressed in (Cecchet,

Marguerite, and Zwaenepoel, 2002) and (Gorton and Liu, 2003). The former implements

an e-commerce application using different architectures comprised of Entity beans and

Session beans with BMP and CMP. The latter focuses on a similar issue but reports on

experiments using several different container systems.

One of the papers explicitly addresses JDO. In (Baldwin, 2003), the issue hinges on

how well these technologies (plus some non-Java specific ones) handle the extremely

large data sets at the National Climate Data Center.

The other references serve as background for the JDO technology.

The goal of this research paper will be to synthesize the established results regarding

direct access using JDBC in servlets or JSPs versus using the tiered architectures possible

with EJBs with the new developments possible with JDO.

4 Technologies Overview

This section provides an overview of the various Java technologies available for

database access.

JDOSQLJ

Database

servletsJSP Session EJB
JDBC

Entity EJB
CMPBMP

Vendor
Proprietary

Figure 1. Relationships of Java technologies and database access. (Standalone
applications and applets are not shown.)

Craig E. Ward Page 4 7/3/05

4.1 JDBC
Java Database Connectivity is the Java base standard interface for accessing

databases. JDBC encapsulates and hides the details of finding and connecting to a

database. It also shields the Java code from specific vendor database implementations.

Application A Application B

JDBC

Oracle DB2 MySQL

Figure 2: Role of JDBC as interface between applications and vendor
database engines.

There are four types of JDBC drivers. Type 1 drivers are “bridging technology” and

require another layer, such as ODBC, to do the actual access. Type 2 drivers call a host

native API, such as an API written for C programs, to access the database as if they were

written in the native language. Type 3 drivers use a network API to connect to another

middleware product that performs the access work. Type 4 drivers, or pure Java drivers,

use Java sockets to talk directly to the database engines. These will be the most efficient

drivers.

The main classes of JDBC that handle connections, statements and data are

Connection, Statement, and ResultSet, respectively. In the background are a Driver class

and a DriverManager class.

Craig E. Ward Page 5 7/3/05

The DriverManager class maintains a list of registered Driver classes. An application

can create a new connection by sending the DriverManager a connection string. The

following example illustrates (adapted from Reese, 2000):

Connection connection = null;
 try { // load the driver

 Class.forName(args[0]).newInstance();
 } catch(Exception e) { // problem loading driver, class not exist?
 e.printStackTrace();
 return;
 }
 try {
 connection = DriverManager.getConnection(args[1],args[2],args[3]);
 } catch(SQLException e) {
 e.printStackTrace();
 } finally {
 if(connection != null) {
 try { connection.close(); }
 catch(SQLException e) {
 e.printStackTrace();
 }
 }
 }

When the JDBC driver class is loaded (Class.forName()), it registers itself with the

DriverManager so that it may be returned by the getConnection() method. Any error or

problem encountered by the JDBC driver results in an SQLException.

The Statement classes are used to query and modify data. SQL code can either be

“hard coded” into the creation of the statement or can be dynamically built. Data is

returned from a query in a ResultSet. The following example method illustrates a

PreparedStatement and the processing of a ResultSet.
public void printAccounts(String name) throws SQLException
 {
 DataSource ds = null;
 Connection conn = null;
 PreparedStatement ps = null;
 ResultSet rs = null;

 try {
 ds = this.getDataSource();
 conn = ds.getConnection();
 ps = conn.prepareStatement("select account,ballance from accounts
 where customer_name = ?");
 ps.setString(1,name);
 rs = ps.executeQuery();

 while (rs.next()) {
 System.out.println (rs.getString("account") + "\t" +

 rs.getFloat("ballance"));
 }
 } catch (Exception e) {
 System.out.println(e.getMessage());
 } finally {
 if(rs!=null) rs.close();
 if(ps!=null) ps.close();
 if(conn!=null) conn.close();
 }
 }

Craig E. Ward Page 6 7/3/05

The example illustrates the some of the methods of available from a

PreparedStatement and ResultSet objects and how JDBC can process multiple rows of

data.

JDBC is a useful interface for accessing data in a relational database. It allows the

developer to ignore the details of connections and allows more focus on the needs of the

application.

4.2 SQLJ

SQLJ is a call language interface (CLI) and follows a traditional pattern allowing for

SQL code to be embedded directly into Java code. A pre-processor is used to translate the

SQL into the corresponding JDBC calls. Although SQLJ is not an official Java standard,

it is part of a suite of standards that allow database applications to use Java both in the

user interface programs and within the database engine itself1 and has been incorporated

into the database products of some major database vendors. Below is a simple example:2

try {
#sql { DELETE
 FROM employee
 WHERE emp_id = 17
 };
}
catch (SQLException sqe) {
 System.out.println
 (sqe.getMessage());
}

The “#sql” indicates to the preprocessor that SQLJ code is beginning. Everything

between the following matching braces will be translated into the corresponding JDBC

code. The “#sql” serves the same purpose as “EXEC SQL” in the CLI for C. Note that

the code catches a SQL exception just as in the JDBC examples.

SQLJ is designed to allow static SQL statements to be inserted directly into Java

code. If dynamic SQL is needed, then direct JDBC is preferred (Eisenberg and Melton,

1998).

The details of how the database connection is established and maintained are

encapsulated in connection context and execution context classes. These may be either

1 Writing database stored procedures in Java is beyond the scope of this paper.
2 SQLJ Code examples are from (Eisenberg and Melton,1998).

Craig E. Ward Page 7 7/3/05

implicit or explicit and can be shared. The next SQLJ example illustrates the use of an

explicit connection context:
#sql context EmpContext;
String url

 = "jdbc:sybase:Tds:localhost:2638";
EmpContext empCtxt =
 new EmpContext(url, "dba",
 "sql", false);
#sql [empCtxt] { DELETE
 FROM employee
 WHERE emp_id = 17
 };

In this example, the connection context is referenced between the square brackets

before the braces.

SQLJ also has the ability to access Java variables and can create iterators for

processing sets of data by rows. The iterators may bind by name or by column number.

This next example illustrates the use of a named iterator:
#sql iterator Employee
 (int emp_id,
 String emp_Iname,
 java.sql.Date start date
);
Employee emp;
#sql emp = { SELECT emp_iname, emp_id, start_date
 FROM employee
 WHERE emp_fname LIKE 'C%'
 };
while (emp.next()) {
 System.out.println
 (emp.start date() + ", "
 + emp.emp id() + ", "
 + emp.emp iname() .trim()
);
}
emp.close () ;

Vendors that implement SQLJ can do a lot to tailor the resulting JDBC code to

enhance its performance without making the code non-portable. A vendor-specific

customizer can enhance the generated code to allow it to access special vendor features

when it runs on the vendor’s platform. On other platforms, the standard JDBC directed

code would run just as before.

SQLJ provides an interesting approach to database connectivity. While SQLJ is not

considered “object oriented,” it can still have benefits. The use of SQL directly in code

could increase the level of communication between a Java developer and a DBA. Such an

enhancement to communication could make the difference between a failed project and a

successful project.

Craig E. Ward Page 8 7/3/05

4.3 JDO

Java Data Objects is a alternative to JDBC and SQLJ. In addition to encapsulating the

details of connecting to a database, it also allows for the developer to see the data as Java

objects. It could be thought of as a an object-oriented wrapper around JDBC.

Application A Application B

JDBC

Oracle DB2 MySQL

JDO

Figure 3: The relationship of JDO to JDBC and applications.

A Java application that uses JDO for database access does not need to explicitly setup

connections or explicitly give the commands to persist an option in the database. Classes

need only follow a few standard conventions to be able to make use of JDO. The fields of

an object must be accessible to the JDO classes. This is basically the definition of a Java

Bean. All fields of the class are accessible using setters and getters. Finally, the fields

must be compatible with a JDO-supported data type. (JDO does not support

unserializable types like Thread or Socket.)

A class that will be getting or putting objects into a database uses a

PersistenceManager. The PersistenceManager class is supplied by the JDO vendor. This

Craig E. Ward Page 9 7/3/05

class handles all of the interaction with JDBC. The following example illustrates how an

application might use a JDO persistence manager (adapted from Almaer, 2002):
package addressbook;
import java.util.*;
import javax.jdo.*;

public class PersonPersist
{

private final static int SIZE = 3;
private PersistenceManagerFactory pmf = null;
private PersistenceManager pm = null;
private Transaction transaction = null;

private Person[] people; // Array of people which we will persist
private Vector id = new Vector(SIZE); // Vector of current object identifiers

public PersonPersist() {
 System.out.println("Initializing JDO PersistenceManagerFactory.....");

 try {
 // -- these properties can be changed to work with other databases

 Properties props = new Properties();
 props.setProperty("javax.jdo.PersistenceManagerFactoryClass",
 "com.prismt.j2ee.jdo.PersistenceManagerFactoryImpl");

 // -- HSQL DB
 props.setProperty("javax.jdo.option.ConnectionUserName", "sa");
 props.setProperty("javax.jdo.option.ConnectionPassword", "");
 props.setProperty("javax.jdo.option.ConnectionURL",
 "jdbc:hsqldb:hsql://localhost");
 props.setProperty("javax.jdo.option.ConnectionDriverName",
 "org.hsqldb.jdbcDriver");
 pmf = JDOHelper.getPersistenceManagerFactory(props);
 } catch(Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 }

}

public static void main(String[] args) {
 System.out.println("Create PersonPersist");
 PersonPersist personPersist = new PersonPersist();

 System.out.println("Setup and persist a group of people");
 personPersist.persistPeople();

 System.out.println("Display the people that we persisted");
 personPersist.display(SIZE);

 System.out.println("Change a name, and then view the people again");
 personPersist.change();
 personPersist.display(SIZE);

 System.out.println("Delete a person, and then view the people again");
 personPersist.delete();
 personPersist.display(SIZE - 1);

}

public void persistPeople() {
 System.out.println("Creating three people to persist");

 // create an array of Person's
 people = new Person[SIZE];

 people[0] = new Person("Gary Segal", "123 Foobar Lane", "123-123-1234",
 "gary@segal.com", "(608) 294-0192", "(608) 029-4059");
 people[1] = new Person("Michael Owen", "222 Bazza Lane, Liverpool, MN",
 "111-222-3333", "michael@owen.com",
 "(720) 111-2222", "(303) 222-3333");

hsql://localhost

Craig E. Ward Page 10 7/3/05

 people[2] = new Person("Roy Keane", "222 Trafford Ave, Manchester, MN",
 "234-235-3830", "roy@keane.com", "(720) 940-9049",
 "(303) 309-7599)");
 System.out.println("Persisting people");
 pm = pmf.getPersistenceManager();
 transaction = pm.currentTransaction();
 transaction.begin();
 // make all of the objects in the graph persistent
 pm.makePersistentAll(people);
 transaction.commit();
 System.out.println("Finished persisting objects.");

 // retrieve the object ids for the persisted objects
 for(int i = 0; i < people.length; i++) {
 id.add(pm.getObjectId(people[i]));
 System.out.println("Object id is: " + id.elementAt(i));
 }

 // close current persistence manager to ensure that objects are
 // read from the datastore rather than the persistence manager's memory cache.
 pm.close();

}

Like SQLJ, JDO uses an extra step before an application using JDO can run. A JDO

implementation provides an enhancer that adds the necessary extra code to allow the

application to access the database. The input into the enhancer is an XML file that maps

the object to the database. The enhancer can either modify the Java code before it is

compiled or it may modify the byte code that a Java compiler generates. Most vendors

choose the latter. Below is an example of an XML file configuring an object for use by

JDO:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "file:/c:/Apps/Java/OpenFusionJDO/xml/schema/jdo.dtd">
<jdo>
 <package name="addressbook">
 <class name="Person" identity-type="datastore">
 </class>
 </package>
</jdo>

A distinction of JDO is that the objects that are persisted in a database do not need to

correspond to a single row of a relational database table. The same JDO methods and

services will work with object-oriented databases as well as relational or object-

relational. JDO does not require that Java objects be decomposed for insertion into a

database. Both JDBC and SQLJ follow a relational paradigm and are therefore more

bound to that type of database.

4.4 Java Servlets

Servlets are small programs that run in a container as part of a server. This is in

contrast to the applet, which runs on a client, usually a web browser with Java enabled.

Craig E. Ward Page 11 7/3/05

A common use of servlets is to provide interactive, dynamic web applications.

Servlets are one of the responses to scalability problems with Common Gateway

Interface (CGI), an early technology used for dynamic web applications.

The distinction between a CGI program and a servlet is that CGI programs run in

their own address space from the server. That is, the server must create a new process to

run the CGI program. Creating such processes is expensive. For sites that must handle

large numbers of requests, this expense is prohibitive. Because servlets run in a container,

they do not require a separate process and can share the same address space and resources

as the server. Below is a sample of a simple servlet:
package first;

import javax.servlet.http.*;
import javax.servlet.*;
import java.io.*;
import java.util.*;

public class MyServlet extends HttpServlet
{

public void doGet (HttpServletRequest request, HttpServletResponse response)
throws IOException

{
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<h1>Craig's First Servlet</h1>");
out.println("<p>hello!</p>");
out.println(new Date());

}
}

Servlets extend the HttpServlet class to be able to communicate with the container.

The HTML code that is sent back to a browser is coded into calls to a PrinterWriter

object.

XML is used to configure servlets for a web server. The XML properties are used to

map locations to URLs and provide the configuration data needed by servlets to access

resources such as JDBC drivers and connection strings for those drivers. Below is an

example of one such XML configuration:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <display-name>JBlog</display-name>
 <description>
 Simple Servlet Web log Example
 </description>
 <context-param>
 <param-name>webmaster</param-name>
 <param-value>cewcew@mac.com</param-value>
 <description>
 The EMAIL address of the administrator to whom questions

http://java.sun.com/dtd/web-app_2_3.dtd

Craig E. Ward Page 12 7/3/05

 and comments about this application should be addressed.
 </description>
 </context-param>
 <servlet>
 <servlet-name>DBtest</servlet-name>

<description>Testing Connection to MySQL</description>
<servlet-class>DBtest</servlet-class>

 </servlet>
 <servlet>
 <servlet-name>Write</servlet-name>
 <description>
 Write web log data
 </description>
 <servlet-class>jblog.Write</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>Show</servlet-name>
 <description>
 Show Web log
 </description>
 <servlet-class>jblog.Show</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>DBtest</servlet-name>
 <url-pattern>/DBtest</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>Write</servlet-name>
 <url-pattern>/wa/Write</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>Show</servlet-name>
 <url-pattern>/wa/Show</url-pattern>
 </servlet-mapping>
 <error-page>

<exception-type>java.lang.IllegalArgumentException</exception-type>
<location>/MyGlobalErrorPage.jsp</location>

 </error-page>
</web-app>

Servlets are a useful tool for developing web applications. They may or may not need

database access. For applications that do need such access, basically any of the access

layers can be used.

4.5 Java Server Pages

Java Server Pages are an alternate way to write servlets. As shown above, in a Java

servlet, the HTML that is sent to a client for rendering is encoded in the calls to a method

of a PrinterWriter object, for a JSP, the HTML is simply written into the file and the Java

code is encapsulated in special tags.

This alternative is often cited as a way to allow non-programmers to develop servlets.

The Java coding can be completely encapsulated in special purpose tag libraries allowing

for Java code to be added without the JSP writer seeing any of the syntax of Java. Below

is a simple JSP example that would display the current date:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">

http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd

Craig E. Ward Page 13 7/3/05

<html>
<head>

<title>My First JSP</title>
<meta name="generator" content="BBEdit 6.5.2">

</head>
<body>
<h1>My First JSP</h1>
<p>Hello!</p>
<h2>Scriptlet Tag</h2>
<p>
Can contain one or more valid java statements separated by semi-colons. You can use
jsp "implicit objects," i.e. built-in, global objects that have been pre-initialized
and instantiated for you.
</p>
<%
out.println(new java.util.Date());
%>
<h2>Expression Tag</h2>
<p>Saves you from typing out.println.</p>
<%= new Date() %>
<h2>Page Directive</h2>
<p>
Usually at the top.
</p>
<%@ page import="java.util.*"%>
</body>
</html>

The distinction between Java servlets and JSPs is in how they are created. From the

view point of the container, they are all servlets.

4.6 Enterprise Java Beans

Enterprise Java Beans are part of the Java 2 Enterprise Edition (J2EE) specification.

The intent of J2EE to provide a platform for building large scale, efficient, distributed

applications. J2EE is very complex. (EJBs are not to be confused with the older

specification of Java Beans. Simple Java Beans only need to provide accessor and

mutator methods for their attributes.)

The types of EJBs of concern here are Session and Entity EJBs.

Session beans are designed to provide non-persistent, temporary services while Entity

beans are designed to represent objects in a database. It takes three Java source code files

to create one bean. Two of the files define interface methods that the container will

implement and the third provides the actual bean logic.

EJBs declare a Home interface which provides life cycle methods for the bean. The

Remote interface provides methods that provide the services of the bean. The final class

is a class that implements the services of the bean. Below is a simple example. Note the

correspondence between the methods of the Remote interface and the implementation.

Craig E. Ward Page 14 7/3/05

Home interface:
package J2EEApp;

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public interface BankMgrHome extends EJBHome
{
 public BankMgr create() throws CreateException, RemoteException;
} // end class

Remote Interface:

package J2EEApp;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface BankMgr extends EJBObject
{
 // Returns UserID after validating Username + Password in database
 public String loginUser(String pUsername, String pPassword) throws RemoteException;

 // Returns data model object of a Customer
 public CustomerData getCustomerData(String customerID) throws RemoteException;

} // end class

Bean implementation:

package J2EEApp;

import java.sql.*;

import javax.sql.*;
import javax.naming.*;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class BankMgrEJB implements SessionBean
{
 private static final String loginQuery =
 "SELECT USERID FROM J2EEAPPUSER WHERE USERNAME = ? AND PASSWORD = ?";
 private javax.sql.DataSource jdbcFactory;
 private CustomerHome myCustomerHome;

 // SessionBean implementation
 public void ejbActivate() { }
 public void ejbPassivate() { }
 public void ejbCreate()
 {

try {
 Context initialContext = new InitialContext();
 jdbcFactory =

 (DataSource)initialContext.lookup("java:comp/env/jdbc/BankMgrDB");
 myCustomerHome = (CustomerHome)initialContext.lookup("customerServer");
} catch (NamingException ne) {
 System.out.println("NamingException:\n" + ne.getMessage());
}

 }
 public void ejbPostCreate() { }
 public void ejbRemove() { }
 public void setSessionContext(SessionContext ctx) { }

 // Bean methods
 public String loginUser(String pUsername, String pPassword)
 {

Craig E. Ward Page 15 7/3/05

System.out.println("loginUser: " + pUsername + ", " + pPassword + "\n");

String userID = null;
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;
try {
 conn = jdbcFactory.getConnection();
 ps = conn.prepareStatement(loginQuery);
 ps.setString(1, pUsername);
 ps.setString(2, pPassword);
 rs = ps.executeQuery();
 if (rs != null && rs.next()) {

userID = rs.getString("USERID").trim();

 } else {
System.out.println("loginUser: No USERID found\n");

 }
} catch (SQLException se) {
 System.out.println("SQL Exception: " + se.getMessage());
 se.printStackTrace();
} catch (Exception e) {
 System.out.println("Exception: " + e.getMessage());
 e.printStackTrace();
} finally {
 try {

if (rs != null) rs.close();
if (ps != null) ps.close();
if (conn != null) conn.close();

 } catch (SQLException se) { } // ignore here
}
return userID;

 } // loginUser

 public CustomerData getCustomerData(String customerID)
 {

Customer customer = null;
CustomerData cust = null;
try {
 customer = myCustomerHome.findByPrimaryKey(customerID);
 System.out.println("Got Customer from findByPrimaryKey()");
 cust = customer.getCustomerData();
} catch (Exception e) {
 System.out.println("Bad ID " + customerID + ": " + e);
} finally {
 return cust;
}

 } // getCustomerData
} // end class

Like servlets and JSPs, EJBs run in a container on a server. The container arbitrates

all communication between beans and clients. The beans are mapped for the container in

XML configuration files. These files can get rather complex. The reference

implementation provides a GUI tool to aid in the configuration.

5 Performance

Various researchers have analyzed combinations of architectures, examining them for

efficiency of implementation and ease of development. While the results are always

Craig E. Ward Page 16 7/3/05

provisional due to the rapid change in the industry, the results do give insight into how

these architectures can develop.

5.1 Testing Many Architectures

Cecchet, Marguerite, and Zwaenepoel at Rice University conducted an extensive test

of EBJ architectures comparing the scalability and performance of different combinations

of Session and Entity beans with a servlets-only implementation as a baseline. In all

cases, the presentation logic was handled by servlets.

One of the goals of their study was to assess the differences in performance between

Bean Managed Persistence (BMP) and Container Managed Persistence (CMP). The

conclusion was that BMP outperformed CMP on the test platforms. However, both were

outperformed by the servlets-only implementation.

Another architecture in the Rice experiments used Session beans only and that

architecture performed almost as well. They theorize that the reason for this is that the

container is not relied upon for much beyond simple communication. A Session façade

pattern also performed better than a direct EJB architecture. A Session façade pattern has

Session beans communicating with the presentation layer and serving as the interface to

the backend entity beans.

The Rice experiments used two open source J2EE containers and a lot of the

limitations on performance and scalability appeared to come from how the containers

were implemented. One container, JBoss, relied on Java Reflection3 for analyzing the

EJBs. The other, JOnAS, did more at compile time. The latter performed better.

A final experiment used the part of EJB 2.0 standard that allowed for EJBs to define

local interfaces. The prior standard of home and remote interfaces required network

access even when all of the requested resources were on the same physical machine. The

local interfaces cut out this network access with a corresponding increase in performance.

The study also included some statistics regarding the complexity of the various

implementations. The servlet-only implementation was most straightforward. The EJB

requirement for multiple source files to implement the required interfaces resulted in a lot

3 Reflection is a technology that allows a Java object to reveal its attributes to the outside without requiring
source code access.

Craig E. Ward Page 17 7/3/05

of extra complexity. Although each bean class may be simple in itself, the number of

classes can grow dramatically.

A major caveat with the study is that the EJB container implementations were just

snap-shots in time. Each container continues to evolve. Any results are similarly only

snap-shots in time. For example, the JBoss container tested only supported EBJ 1.1.

Today the test might go differently.

5.2 Testing Many Servers

Another study (Gorton and Liu, 2003) focused on just two EJB architectures but

expanded the number of containers tested.

The Gorton and Liu study focused on the stateless session-bean-only and the stateless

session façade patterns. They ran their tests on six containers, some commercial and

some open source. Standalone and clustered configurations were used. The Stock-Online

system was used to simulate an e-commerce application. The experiments simulated

various loads of connections and transaction requests. The analysis included an

evaluation of the ease of development as well as the ease of maintenance.

The results showed some of the commercial containers to be very capable. The

Borland Enterprise Server outperformed all others with the stateless session-bean-only

architecture and was one of the top performers for the session façade pattern.

The study concluded that the session-bean-only pattern was more likely to scale better

than the session façade pattern. Their reasoning was that session façade had too much

additional overhead for inter-bean communication.

5.3 NCDC Study

Only one study (Baldwin, 2003) included JDO as an option. The problem being

addressed by the Baldwin study was the handling of the large amounts of weather data

held by the National Climatic Data Center (NCDC). Some of the data dates back to the

19th Century.

The NCDC needs to be able to retrieve sets of data from its Integrated Surface Hourly

(ISH) data store. Each ISH data set contains 40 elements (temperature, visibility, etc.)

Craig E. Ward Page 18 7/3/05

from which additional summaries can be calculated. To be able to store and efficiently

retrieve this data, the Baldwin study looked at several options.

The first option was a simple file system. The Java objects are serialized4 and written

to a file. The second used a simple key/value database. The serialized object is stored in a

database using the key. The third used a RDBMS and the last an OODBMS.

The RDBMS method could be implemented using just JDBC, or JDO, or as EJBs.

The EJBs could then be implemented with BMP or CMP. (Baldwin asserts that CMP has

“largely replaced” BMP.)

In the tests conducted for the study, the fastest load of data was from the key/value

pair database. The quickest fetch of data was from the simple file system. These

approaches have their problems, however, in managing the large data sets. The ISH data

is being arranged as a data mart with the materialized views following a star model. The

study concluded that for ISH, the data mart, key/value databases and JDO would each

have a role in the solution. Baldwin does note, however, that some database vendors are

not supporting the current JDO standard.5

6 Conclusions and Suggestions

The motivation for preparing this paper was to answer the question, “Does JDO

provide a better way of handling databases in Java applications?” Unfortunately, the

answer is not definitive. It does appear that JDO is a better way, but only if other aspects

of the problem being addressed do not encourage using other technologies.

From the Rice study (Cecchet, et al. 2002) it is clear that simple servlets still have a

place. These can use either JDBC or JDO. They could use SQLJ if that fits better with the

other tools being used for the solution.

While a large, distributed application could benefit from an EJB-based architecture,

this does add significantly to the complexity of the solution. However, this added

complexity must be balanced with real project needs. The more complex the solution, the

easier it is to get wrong.

4 Serialization is a way to export a Java object from a JVM and later to reactivate it in another JVM. Other
technologies use the term “marshalling.”
5 As this paper is being written, a new JDO specification was released in final form so database vendors
may change their view of JDO.

Craig E. Ward Page 19 7/3/05

The research also shows that in some ways, it does not matter what architecture is

used by the application, but the architecture of the container itself can have significant

impact on system performance.

Confounding the issue further, all such performance and scalability tests are limited

in lifespan. Most, perhaps all, of the implementations studied are not today as they were

then.

What is needed is a set of reference tests that can be applied to new systems as they

develop and evolve. That would not be an easy task, but it could be one of great value to

the software industry.

7 References

Almaer, Dion. (2002). Using Java Data Objects. ONJava.com 2/6/2002. URL:
http://www.onjava.com/lpt/a/1372

Java Data Objects (JDO) is a recent addition to the suite of APIs available for
accessing databases from a Java-based environment . This article uses an address
book as a simple example of how the JDO technology is used to build Java objects
from relational databases.

Baldwin, Richard T. (2003). Views, Objects, and Persistence for Accessing a High
Volume Global Data Set. Digest of Papers IEEE Symposium on Mass Storage
Systems (MSS’03) p 77-81

This paper describes lessons learned by the National Climate Data Center (NCDC) as
it decides how to deploy extremely large data sets for use by scientists and
researchers world-wide. Prototype systems were developed using direct file access
from Java programs, a key/value database bundled with Unix systems, and Java Data
Objects (JDO) and Enterprise JavaBeans (EJB) interfaces to RDBMS and ODBMS.

Brown, Jeff. (2002). An Introduction To Java Data Objects. Object Computing, Inc. -
Java News Brief June 2002. URL: http://www.ociweb.com/jnb/jnbJun2002.html

This web article provides a general overview of the Java Data Objects (JDO) API and
how it relates to the prior Java Database Connectivity (JDBC) API. The XML
descriptions of the RDBMS-to-Java object mappings are also discussed.

http://www.onjava.com/lpt/a/1372
http://www.ociweb.com/jnb/jnbJun2002.html

Craig E. Ward Page 20 7/3/05

Cecchet, Emmanuel ; Marguerite, Julie and Zwaenepoel, Willy. (2002). Performance and
Scalability of EJB Applications. Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, OOPSLA, 2002, p 246-261

The paper describes a study of the performance of an e-commerce application
utilizing different combinations of Enterprise JavaBeans. The conclusion of the study
is that stateless session beans with bean managed persistence out perform alternate
combinations of entity beans with container managed persistence. A major factor in
their results was the internal architecture of the tested containers. The container that
relied upon Java Reflection did not perform as well as the container that did pre-
compiling of the bean interface implementations. The study compared JBoss 2.4.4
and JOnAS 2.4.4. The servlet container was Tomcat 3.2.4.

Eisenberg, Andrew and Melton, Jim. (1998). SQLJ Part O, now known as SQL/OLB
(Object-Language Bindings). SIGMOD Record, Vol. 27, No. 4, December 1998. p
94-100

SQLJ/OLB is a standard for embedding SQL code directly into Java source code.
This paper describes the standard and illustrates how it merges with the Java
Database Connectivity (JDBC) API.

Gorton, Ian and Liu, Anna. (2003). Evaluating the Performance of EJB Components.
IEEE Internet Computing, v 7, n 3, May/June, 2003, p 18-23

A report comparing the performance of two common Java 2 Enterprise Edition's
(J2EE) Enterprise JavaBean (EJB) application architectures. J2EE allows for
management of object persistence either by the server container or the EJBs
themselves. The architectures were tested on Borland Enterprise Server 5.02,
Interstage Application Server 4.0, SilverStream Application Server 3.7.4, WebLogic
Server 6.1, WebSphere Application Server 4.0, and JBoss 2.4.3. Their conclusion was
that the session-bean-only pattern was more likely to scale better than the session
façade pattern.

Hunter, Jason, William Crawford. (2001). Java Servlet Programming 2nd Edition.
O’Reilly & Associates.

The book covers Java Servlet standards 2.2 and a draft of the 2.3 standard.

Jordan, David and Russell, Craig. (2003). JDO or CMP? ONJava.com 05/21/2003. URL:
http://www.onjava.com/lpt/a/3763

This web article provides a bullet comparison of the capabilities of object persistence
using Java Data Objects (JDO) and Container Managed Persistence (CMP) of the
Java 2 Enterprise Edition standard. It is excerpted from the book Java Data Objects
published by O’Reilly & Company by the same authors.

http://www.onjava.com/lpt/a/3763

Craig E. Ward Page 21 7/3/05

Monson-Haefel, Richard. (2001). Enterprise JavaBeans 3rd Edition. O’Reilly &
Associates.

The book covers the fundamentals of J2EE development using the current EJB 2.0
standard as well as the previous EJB 1.1 standard.

Reese, George. (2000). Database Programming with JDBC and Java 2nd Edition.
O’Reilly & Associates.

This is a how-to book on JDBC and its Java interface. The book provides examples of
using various configurations of a JDBC environment and a complete listing of all of
the interfaces and classes in the standard. It covers the JDBC 2.0 version of the
standard.

Salo, T. and Hill, J. (2000). Building Enterprise Web Applications with Java. JOOP -
Journal of Object-Oriented Programming, v 13, n 2, May, 2000, p 28-29+47

Five architectures for web applications utilizing different combinations of Java-based
technologies are examined. Systems using components comprised of servlets, Java
Server Pages (JSP), Java Beans and Enterprise JavaBeans, and combinations are
compared.

Tost, A. and Johnson, V.M. (2000). Using JavaBeans Components as Accessors to
Enterprise JavaBeans Components. IBM Systems Journal, v 39, n 2, 2000, p 293-
300

The paper describes how using JavaBean components in a Enterprise JavaBean
allows for a clean, three-tier architecture separating client-side and server-side
implementations.

