Kholoud Khateeb, Craig Ward

CMSI 698, Internet Technologies

Homework Assignment 3, April 3, 2003

1. Linux Blind TCP Spoofing attached.
2. Source listing for SimpleSmtpDemo.java attached.

3. Source listing for head.c attached.

4. Source listing for capitalize_server.c attached.

5. Commands dig and nslookup used for answers. Shell special characters are quoted so that they can be passed along to the commands.

a) IP addresses of “google.com” (from dig google.com a in):

google.com. 5M IN A 216.239.33.100

google.com. 5M IN A 216.239.51.100
b) Aliases for “mail.lmu.edu” (from dig mail.lmu.edu any in):

mail.lmu.edu. 6H IN MX 10 mail.lmu.edu.

mail.lmu.edu. 6H IN MX 100 mail.uu.net.

mail.lmu.edu. 6H IN A 157.242.48.189

(The MX records indicate who will temporarily handle LMU email if the server is down.)

c) The authority for the “in-addr.arpa” domain (from dig *.in-addr.arpa soa in):

in-addr.arpa. 0S IN SOA A.ROOT-SERVERS.NET. bind.ARIN.NET. (

 2003032716 ; serial

 30M ; refresh

 15M ; retry

 1w1d ; expiry

 3H) ; minimum

d) Authorities for “.biz”, “.cx”, and “.moma.museum” domains:

biz. 1D IN SOA a.gtld.biz. hostmaster.gtld.biz. (

 4455928 ; serial

 15M ; refresh

 15M ; retry

 1W ; expiry

 1D) ; minimum

cx. 1D IN SOA ns1.cx-nic.org. hostmaster.nic.cx. (

 2109132719 ; serial

 3H ; refresh

 1H ; retry

 1W ; expiry

 1D) ; minimum

museum. 0S IN SOA nic.museum. hostmaster.nic.museum. (

 2003032218 ; serial

 8H ; refresh

 2H ; retry

 2W ; expiry

 1H) ; minimum

e) Names and IP addresses of the world’s root servers (from dig \. ns in):

J.ROOT-SERVERS.NET. 6d12h25m28s IN A 192.58.128.30

K.ROOT-SERVERS.NET. 6d12h25m28s IN A 193.0.14.129

L.ROOT-SERVERS.NET. 6d12h25m28s IN A 198.32.64.12

M.ROOT-SERVERS.NET. 6d12h25m28s IN A 202.12.27.33

I.ROOT-SERVERS.NET. 6d12h25m28s IN A 192.36.148.17

E.ROOT-SERVERS.NET. 6d12h25m28s IN A 192.203.230.10

D.ROOT-SERVERS.NET. 6d12h25m28s IN A 128.8.10.90

A.ROOT-SERVERS.NET. 6d12h25m28s IN A 198.41.0.4

H.ROOT-SERVERS.NET. 6d12h25m28s IN A 128.63.2.53

C.ROOT-SERVERS.NET. 6d12h25m28s IN A 192.33.4.12

G.ROOT-SERVERS.NET. 6d12h25m28s IN A 192.112.36.4

F.ROOT-SERVERS.NET. 6d12h25m28s IN A 192.5.5.241

B.ROOT-SERVERS.NET. 6d12h25m28s IN A 128.9.0.107

f) Domain names associated with 209.104.35.16 (from nslookup 209.104.35.16 (cleaner than dig -x 209.104.35.16)):

guide-vip.lax.citysearch.com

g) The mail hosts for earthlink.net (from dig mail.earthlink.net a in):

mail.earthlink.net. 13m16s IN A 207.217.121.215

mail.earthlink.net. 13m16s IN A 207.217.121.216

mail.earthlink.net. 13m16s IN A 207.217.121.217

mail.earthlink.net. 13m16s IN A 207.217.121.218

mail.earthlink.net. 13m16s IN A 207.217.121.219

mail.earthlink.net. 13m16s IN A 207.217.121.220

mail.earthlink.net. 13m16s IN A 207.217.121.221

mail.earthlink.net. 13m16s IN A 207.217.121.222

mail.earthlink.net. 13m16s IN A 207.217.121.223

mail.earthlink.net. 13m16s IN A 207.217.121.210

mail.earthlink.net. 13m16s IN A 207.217.121.211

mail.earthlink.net. 13m16s IN A 207.217.121.212

mail.earthlink.net. 13m16s IN A 207.217.121.213

mail.earthlink.net. 13m16s IN A 207.217.121.214

h) The refresh interval for the citysearch.com zone (from dig citysearch.com soa in): 4 hours 33 minutes 4 seconds

6. This comment is stupid because all domain names can be placed in a single server or can choose to run several servers. Small organizations mostly choose a single server since they don’t have many computers, while big organizations choose to have many servers since they have lots of computers and should have many domain names.

Two major factors influence how quickly names resolve:

· The locality, or how “close,” the requested domain is to the name server. Machines in the local domain will resolve faster because an authoritative server is nearby.

· How often a domain is requested. When a request causes external queries, the answer can be cached, for a time, in the local name server and reused.

7. Using a telnet client to interact with a ftp server requires two telnet (terminal) sessions. Open a telnet session to the ftp server on the standard port for FTP, 21. This comes the control session and remains active until the telnet session terminates.

$ telnet 192.168.1.101 21

Trying 192.168.1.101...

Connected to 192.168.1.101.

Escape character is '^]'.

220 192.168.1.101 FTP server (lukemftpd 1.1) ready.

user cew

331 Password required for cew.

pass xxx

230-

 Welcome to Darwin!

230 User cew logged in.

syst

215 UNIX Type: L8 Version: lukemftpd 1.1

Note that when using telnet, the password is echoed on the screen (and edited here).

FTP uses a second connection to transfer data not directly related to control issues. To get the server to allow the client side to initiate a data transfer, a PASV request should be issued.

pasv

227 Entering Passive Mode (192,168,1,101,192,45)

NLST

The port at which the client can connect is calculated from the last two numbers in the response: (192 * 256) + 45. The server is waiting on port 49197.

In a second terminal window (The file list has been trimed.):

$ telnet 192.168.1.101 49197

Trying 192.168.1.101...

Connected to 192.168.1.101.

Escape character is '^]'.

.appletviewer

.autosave

…

Connection closed by foreign host.

In the original terminal window:

150 Opening ASCII mode data connection for 'file list'.

226 Transfer complete.

A similar technique is used to retrieve files. The limitation is that a file is not saved on the local disk. The content of the file is displayed in the terminal window, possibly truncated, depending on the terminal window software.

	Control Window
	Data Window

	TYPE A

200 Type set to A.

pasv

227 Entering Passive Mode (192,168,1,101,192,49)

retr LoremIpsum.txt

150 Opening ASCII mode data connection for 'LoremIpsum.txt' (1102 bytes).

226 Transfer complete.
	$ telnet 192.168.1.101 49201

Trying 192.168.1.101...

Connected to 192.168.1.101.

Escape character is '^]'.

Connection closed by foreign host. with residual dummy titles." ir client..

(The terminal software garbled the text.)

	TYPE I

200 Type set to I.

PASV

227 Entering Passive Mode (192,168,1,101,192,53)

RETR ROMIE-IF.JPG

150 Opening BINARY mode data connection for 'ROMIE-IF.JPG' (86193 bytes).

226 Transfer complete.
	$ telnet 192.168.1.101 49205

Trying 192.168.1.101...

Connected to 192.168.1.101.

Escape character is '^]'.

JFIFHHlPhotoshop 3.08BIM…

(The binary data jumbled the screen.)

The technique for using telnet and an ftp server comes from a document from the WU-FTPD Development Group about using telnet to test an ftp server. (URL: http://www.wu-ftpd.org/HOWTO/telnet.testing.HOWTO)

8. An “annoying” HTTP server in less than 20 lines. The annoying part is that the server randomly returns any HTTP code other than “200,” i.e., success.

/* CMSI 698, Spring 2003, Craig E. Ward, Kholoud Khateeb */

public class AnnoyingHttp {

 private static String codes[] = {"100","101","201","202","203","204","205",

 "206","300","301","302","303","304","305","306","307","400","401","402",

 "403","404","405","406","407","408","409","410","411","412","413","414",

 "415","416","417","500","501","502","503","504","505"};

 public static void main(String argv[]) throws Exception {

 java.util.Random rg = new java.util.Random(System.currentTimeMillis());

 java.net.ServerSocket listener = new java.net.ServerSocket(8089);

 try { while (true) {

 java.net.Socket client = listener.accept();

 java.io.PrintWriter out = new java.io.PrintWriter(client.getOutputStream(),true);

 out.println("HTTP/1.1 " + codes[rg.nextInt(codes.length)] +

 "\r\nServer: Annoying (Java)\r\nConnection: close\r\n");

 client.close();

 }

 } finally { listener.close(); }

 }

} // end class AnnoyingHttp

Khateeb and Ward
Page 4
4/3/03

