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ABSTRACT 
 
The High Level Architecture Object Model Template (HLA OMT) supports simulation interoperability by provid-
ing a Federation Object Model (FOM) to formally describe the information interchange (objects, object attributes, 
interactions, and interaction parameters) within a simulation federation. Information used by a single federate within 
the federation is defined by the Simulation Object Model (SOM).   
 
Often the federate SOMs are mutually incompatible, so standing up a federation typically requires a tedious process 
modifying the simulation federates to conform to the proposed FOM. A variety of agile FOM techniques have been 
proposed to facilitate this integration process.  
 
From the simulation data logging and analysis perspective, there is an analogous problem of adapting the analysis 
tools to particular federations. Data analysis tools are designed in accordance with the analysts’ notion of Measures 
of Effectiveness (MOE) and Measures of Performance (MOP). Often these measures are not directly compatible 
with respect to the underlying federation object model. This is especially troublesome for the lower-level MOP, 
which must have common characteristics with the logged FOM data.  
 
This paper presents a two-layered framework that supports the agile adaptation of analysis tools to specific federa-
tions. The top semantic layer provides a modeling framework to capture concepts that analysts tend to use. The con-
cepts include measurements and dimensions. Examples of dimension include are object classifications, time, and 
geographic containment.  The lower syntactic layer describes how to map the particular federation object models to 
more abstract semantic concepts. In addition, we show how this approach supports reuse by taking advantage of the 
hierarchical nature of the object models. These concepts are now being successfully implemented and evaluated in 
the Joint Forces Command Urban Resolve 2015 experiment.  
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INTRODUCTION 
 
The High Level Architecture Object Model Template 
(HLA OMT) supports simulation interoperability by 
providing a Federation Object Model (FOM) to for-
mally describe the information interchange (objects, 
object attributes, interactions, and interaction parame-
ters) within a simulation federation. Information used 
by a single federate within the federation is defined by 
the Simulation Object Model (SOM).  
 
Often the federate SOMs are mutually incompatible, so 
standing up a federation typically requires a tedious 
process modifying the simulation federates to conform 
to the proposed FOM. A variety of agile FOM tech-
niques have been proposed to facilitate this integration 
process.  
 
From the simulation data logging and analysis perspec-
tive, there is an analogous problem of adapting the 
analysis tools to particular federations. Data analysis 
tools are designed in accordance with the analysts’ 
notion of Measures of Effectiveness (MOE) and Meas-
ures of Performance (MOP). Often these measures are 
not directly compatible with respect to the underlying 
federation object model. This is especially troublesome 
for the lower-level MOP, which must have common 
characteristics with the logged FOM data.  
 
This paper presents a two-layered framework that sup-
ports the agile adaptation of analysis tools to specific 
federations. The top semantic layer provides a model-
ing framework to capture concepts that analysts tend to 
use. The concepts include measurements and dimen-
sions. Examples of dimension include are object classi-
fications, time, and geographic containment.  
 
The lower syntactic layer describes how to map the 
particular federation object models to more abstract 
semantic concepts. In addition, we show how this ap-
proach supports reuse by taking advantage of the hier-
archical nature of the object models. These concepts 
are now being successfully implemented and evaluated 
in the Joint Forces Command Urban Resolve 2015 
experiment.  
 

AGILE DATA FRAMEWORK 
 
The type of measure of effectiveness/measure of per-
formance questions of interest to analysts are typically 
not directly captured by simulation loggers.  In general 
analysts are interested in how well higher level mission 
tasks and objects are satisfied. An MOE is a question, 
or a measure, designed to illuminate how well particu-
lar mission tasks are satisfied with respect to a system 
(Gentner et. al., 1996).  
 
An MOP is typically a quantitative measure of a sys-
tem characteristic used to support an MOE. For exam-
ple, sample MOE questions are “Can the red forces be 
pinned?”, or “Can the sensors detect red force move-
ment within urban environment?”. MOPs supporting 
these MOEs are typically statistical in nature. They 
may include percentage of red forces killed/damaged, 
percentage of blue forces killed/damaged, time taken 
for red forces to cross terrain, percentage of red forces 
detected within sensor footprint, percentage of red 
forces detected total, and percentage of detection by 
sensor type by terrain type by time of day. 
 
Simulation loggers do extremely well at capturing de-
tailed operational data. Our distributed data loggers 
have captured terabytes of simulation data for the Ur-
ban Resolve Phase I exercises. Operational data in-
clude individual entity state changes and interactions 
among the entities. Depending on the type of entity, 
entity state changes may include location, orientation, 
and velocity. For vehicles, additional attributes may 
include external lights on and engine on. Interactions 
may include collision, damage assessment, sensor de-
tection, and contact report. Only after appropriate 
processing are these types of operational data of poten-
tial use to the analysts. 
 
The logging data collected from the simulation is at too 
low a level to be of direct use to the analysts. Informa-
tion needs to be abstracted from the logged data by 
collation, aggregation and summarization. In order to 
perform this data transformation an analysis data 
model (ADM) has to be defined that is suitable for ana-
lysts and decision makers. We propose using a multi-
dimensional data model as way representing the infor-
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mation from their perspective, see Section Defining 
the Analysis Data Model. Next, a logging data model 
(LDM) of representing the collected data has to be de-
fined, see Section Logging Data Model. This logging 
data model is defined in the context of HLA federa-
tions. In particular for the JSAF and SLAMEM simula-
tion federates for the Urban Resolve exercises. Then, 
to bridge the gap and connect these two data models, 
we define abstraction relationship that maps the log-
ging model to the analysis model, see Section 
Mapping between LDM and ADM. The 
Implementation Section describes our schema design 
and an initial graphical data abstraction mapping tool, 
as a part of the Scalable Data Grid toolkit (Yao and 
Wagenbreth, 2005). Section Distributed Logging and 
Analysis describes how these logging and analysis 
data fit into the process of distributed simulation envi-
ronment used by US Joint Forces Command 
(USJFCOM). 
 

DEFINING THE ANALYSIS DATA MODEL 
 
One of the key focus areas of Urban Resolve exercises 
is to study the effectiveness of future Intelligence, Sur-
veillance and Reconnaissance (ISR) sensors in helping 
soldiers operate in complex urban environments. The 
Sensor/Target Scoreboard provides a visual way of 
quickly comparing the relative effectiveness of indi-
vidual sensor platforms and sensor modes against dif-
ferent types of targets (Graebener et al., 2003; Grae-
bener et al., 2004). Sensor/Target Scoreboard is a spe-
cific instance of the more general multidimensional 
analysis (Kimball et al., 1998).  We use the Sen-
sor/Target Scoreboard to motivate the discussion. In a 
2005 I/ITSEC paper, we described the data manage-
ment and analysis tool Scalable Data Grid that uses 
multidimensional analysis (Yao and Wagenbreth, 
2005).  
 
In the Urban Resolve exercise, simulated sensor enti-
ties lay down sensor footprints to delimit sensor cover-
age sweep. For each target entity within the footprint, a 
contact report is generated to hold the result of the sen-
sor detection. The contact report includes information 
about the sensor entity, the platform the sensor entity is 
mounted on, the sensor mode, the target entity, the 
detection status, the perceived target type, the per-
ceived target location, the perceived target velocity, 
and so on. 
 
Sensor/Target scoreboards have the capability of pro-
viding summary views by aggregating individual sen-
sor platforms into sensor platform types, such as high 
altitude, medium altitude, and low altitude. And, it 
aggregates individual target entity objects into target 

classes, which can range from the generic (like Civilian 
Large Trucks) to the specific (like Russian MAZ-543 
MEL). 
 
The Sensor/Target scoreboard is an example of two-
dimensional of a multidimensional cube. Its two di-
mensions are the sensor dimension and target. One can 
imagine extending the scoreboard to take into account, 
say, weather conditions and time of day. This would 
add two more dimensions to form a four-dimensional 
cube. 
 
We define our Analysis Data Model (ADM) in terms 
of multidimensional analysis. The ADM model con-
sists of two key concepts dimensions of interest and 
measures of performance. Dimensions are used to de-
fine the coordinates of multidimensional data cubes. 
The cells within this data cube are the measure values. 
 

 
Figure 1. Dimensions of Interest and Measures of 

Performance 

 
Dimensions of Interest 
 
For large simulations, like the Urban Resolve exer-
cises, the magnitude of data collected ranges in the 
terabytes. Dimensions categorize and partition the data 
along lines of interest to the analysts. Defining multiple 
crosscutting dimensions aids in breaking the data into 
smaller orthogonal subsets.  
 
Dimensions have associated measurement units, or 
coordinates.  Choosing the granularity of these units 
aids in determining the size of the subsets. For exam-
ple, depending of the dynamic nature of the phenome-
non the analysts are trying to study, they may choose to 
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define time dimension units in term of minutes, days, 
weeks or years.  
 
Another dimension example is in terms of simulation 
entity groups. For the sensor dimension in the sen-
sor/target scoreboard, the analyst may want to group 
together sensors by the type of platform: high-flying 
UAVs (unmanned aerial vehicles), mid-altitude UAVs, 
OAVs (organic air vehicles) and UGSs (unattended 
ground sensors). The targets may be group together, 
for example, by transportation mode: air, ground and 
sea. 
 
Hierarchical dimensions define how a coordinate re-
lates to other coordinates as its subset. It serves to 
group together similar units from the analyst’s perspec-
tive. By defining hierarchical dimensions, analysts 
inform the system on how to aggregate and summarize 
information. For example, the analysts may want to 
subdivide the sensor platform category into the sensor 
modes: MTI (moving target indicators), SAR (syn-
thetic aperture radar), images, video, and acoustic.  
 
Hierarchical dimensions can be viewed as a partial 
ordering relationship. At the top node of the partial 
ordering is the set containing all the coordinates. The 
bottom nodes of the partial ordering are singleton sets 
containing just one coordinate. Edges between nodes 
indicate superset/subset relationship. A node’s parent is 
its superset. A node’s child is its subset.  
 
Nodes in hierarchical dimensions are also given coor-
dinates.  We call coordinates for non-singleton nodes 
abstract coordinates. Coordinates for singleton nodes 
are the concrete coordinate of the single element in set.  
 
Multiple decompositions of the same dimension are 
also useful. For example, there may be many different 
simulation federate types playing in the federation. The 
analysts may want to verify how each federate re-
sponse to the sensor contacts, so they define the cate-
gory to be the type of federates. 
 
Measures of Performance 
 
After the data have been partitioned along lines of in-
terest, the data subsets may still be large. Measures 
provide quantitative ways of characterizing the data 
subsets.  A key characteristic that measures should 
have is that they are can be aggregated. The hierarchi-
cal crosscutting dimensions partition the data into a 
hierarchy of subsets. The measure must be able to pro-
vide a meaningful summarization.  To be computa-
tional efficient the measure aggregation operator must 
satisfy the associative and commutative properties—

the measure of a set must be computable from the 
measures its subsets.  
 
In the case of the sensor/target scoreboard the measure 
of performance is simply an integer count of the num-
ber of times a sensor has detected a target. The aggre-
gation operator is the addition operator. 
 
Sometimes mean and variance performance measures 
are of interest to analysts. For example, instead of inte-
ger detection counts, the sensor/target could be ex-
tended to maintain a floating-point number indicating 
degree of uncertainty.  Then, in this case it makes 
sense to measure the mean and the variance of uncer-
tainty. As defined the mean and variance operators do 
not satisfy the associative and commutative properties. 
For example, given only the means of two subsets, it is 
not possible to compute the mean of the union of the 
two subsets. However, the mean and variance measures 
are computable from other measures that are efficiently 
computable. Mean can be computable from two asso-
ciative measures: the count of number of detections (or 
uncertainties), and the sum of uncertainties. Variance 
requires an additional sum of squares of uncertainty. 
Let X be the uncertainty, and n be the count of number 
of detections: 
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Correlating Measures 
 
Typically MOE decomposes into multiple performance 
measures. If it is possible to decompose these measures 
along the same dimensions, or sometimes called con-
forming dimensions, then it is possible to compare 
these measures.  Figure 1 depicts an additional damage 
assessment measure. Potentially target entity, time and 
location dimensions are applicable to both damage 
assessment and sensor effectiveness. For example, an 
analyst may ask how more likely are detected enemy 
target entities to be damaged.  
 
Let X be sensor effectiveness and Y be damage assess-
ment. If define an additional measure that is the sum of 
X times Y, then we can determine covariance between 
damage and detection by using the “mean” operator: 
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LOGGING DATA MODEL 
 
The Logging Data Model (LDM) describes the content 
and format of data being logged by SDG. SDG uses 
relational databases to store the logged data. In this 
case, the LDM is a basically a relational schema. 
 
Logging Data Model Generation 
 
HLA rules state that the FOM shall document the 
agreement among the federates on data to be ex-
changed at runtime. Our LDM is automatically gener-
ated from the FOM description.  FOM describes objec-
tion classes and interactions. Classes have attributes, 
and interactions have parameters. The attributes and 
interactions are defined in terms of primitive data types 
and complex data types. 
 
For each object class we create one top-level table 
within the relational schema. Simple primitive class 
attributes mapped to columns in the table.  Attributes 
with complex data types many be either mapped to 
multiple columns, or to rows in a sub-table. Complex 
data types with fixed length and with low cardinality 
are mapped to multiple columns in the top-level table. 
For example, a location attribute with x,y,z coordinates 
are mapped three columns. Complex data types with 
high or unbounded cardinality, such as arrays, are 
mapped to sub-tables.  The sub-table contains keys 
referencing the parent table, sequence column indicat-
ing the order in the array and data columns represent-
ing the actual data. Depending on the data type, it is 
possible to have sub-table of sub-table tables. Interac-
tions and their corresponding parameters are handled 
similarly to the object classes and their attributes. 

 
The purpose of the relational schema is for the efficient 
storage of log data intercepted during the federation 
execution. It is not intended to capture all the informa-
tion contained within the FOM.  Uschold (2004) points 
out that the primary purpose of relational schema is 
data integrity. For example, database foreign key con-
straints can be used to enforce that a row in a sub-table 
must have a corresponding row in the parent table. 
When deleting the parent row all the corresponding 
sub-table rows must also be deleted. However, such 
data integrity constraints are expensive to enforce. In 
practice many applications such as the SDG identifies 
these constraints during but does explicitly enforce 
them on the collected data. However, we do use for-
eign key constraints on the Analysis Data Model. 
 
Intercepting/Decoding HLA Messages 
 
HLA rules state that all exchange of FOM data among 
federates shall occur via the RTI, and that federates 
shall interact with the RTI in accordance with the HLA 
interface specification.  RTI-s, a highly-scalable im-
plementation of the RTI (Helfinstine et. al., 2003), 
provides an interceptor plug-in framework that exposes 
calls to this HLA interface to registered plug-ins, see 
Figure 2. SDG exploit this plug-in to intercept and log 
messages federate attribute updates and interaction 
sends. With respect to the RTI, the contents of these 
messages are raw binary strings. RTI provides pub-
lish/subscribe facilities to exchanges these messages, 
but not decode their contents. To provide query and 
analysis capabilities, these messages must be decoded 
with respect to FOM. 
 

 

 
Figure 2. Logging data flow 

MAPPING BETWEEN LDM AND ADM 
 
The data intercepted from the simulation federates is 
stored according to the Logging Data Model (LDM). 
To provide useful information to the analysts the data 
has to be abstracted and aggregated by translated it 

into the Analysis Data Model (ADM). Figure 3 de-
picts the data flow for this translation process.  
 
Message Extraction 
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The purpose of the message source extraction is to 
provide an interface layer that hides FOM variations 
from the rest of mapping process.  Message extrac-
tion performs include: filtering to keep on the col-
umns needed by the analysis data model, and parti-
tioning values. Currently, message extraction is im-
plemented using SQL select statements. 
 
As described in the previous section log data is 
stored within a relational database using a LDM 
schema that is automatically generated from the 
FOM. In practice, the information within the LDM 
schema is a super set of the information needed by 
analysis data model. Message extraction prunes away 
columns that are not needed. 
 
The rationale for partitioning is two-folds. One is the 
numerical precision that simulators are capable of is 
often not needed by the analysts who are interested in 
summary and aggregate information. Message extrac-
tion take the initial processing step needed to map the 
logged toward analyst’s notion of dimension of inter-
est. Second is such high precision generates large 

cubes that takes huge storage space. The analysts 
have to decide the minimum granularity he wishes to 
examine the data. 
 
Partitioning can be performed on single numerical 
values, or vector values. The prototypical example of 
single numerical value is time. JSAF typically keeps 
time at the resolution of seconds. SDG logs message 
on the order of milliseconds. An example of vector 
values is geographical location. JSAF is capable of 
sub-meter location resolution. 
 
The partitions do not necessarily have to be uniform 
and linear. To emphasize particular time periods and 
locales where actions are taking place, analysts 
should be able to define smaller grain partitions. For 
example, in urban center where the battles occur the 
grid size can be defined relatively small, say one 
hundred meter squared or ten meter squared. Then 
the grid size can progressively increased the locale 
move towards the outskirts of the city. 
 

 

 
 

Figure 3. Data flow for mapping data stored in the Logging Data Model to the Analysis Data Model 

 
Fact Generation 
 
The inputs to the fact generator are messages, and the 
outputs are coordinates into the cube along with the 
measures associated with the cube. Two operations that 
the fact generator has to perform are: dimension regis-
tration and measure computation. 
 
The purpose of dimension registration is to assign the 
facts to their proper concrete coordinates. In the case of 
sensor/target scoreboard, given a fact that states sensor 
UAV-347 detected M1A1-tank-14, determine the cell 
in the scoreboard that needs to be updated. The dimen-
sion registration involves two steps. The first is a pre-
computation step. All the partitions within a dimension 

have to be assigned unique numbers or coordinates. 
Second step is, given a fact, determine which partition 
it belongs. For entity-based dimension, determining the 
partition may just be a simple table lookup. For nu-
merical valued dimensions, algebraic or piecewise lin-
ear mapping functions may be used. For geo-location 
dimensions, simple computational geometry contain-
ment may be used. 
 
Once the dimension coordinates have been determined, 
measure computation determines what value to put into 
the cube cell. As we have seen in the analysis model 
section many common measure can be computed using 
simple polynomials. For counts the measure simply 
returns the number one. For computing mean, the value 
itself has to be returned. For variance, an additional 
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square of the value is needed. For covariance, multi-
plying the two individual measures is needed. 
 
Cube Computation 
 
Facts are concrete observations from the simulation. 
The facts have to be aggregated according to how hier-
archical dimensions are defined. The cells correspond-
ing to the abstract coordinates of the cube have to be 
computed. Here we assume the aggregation operator 
satisfies the associative and commutative properties. 
Given these assumptions we can efficiently compute 
measures for all the abstract coordinates by doing a 
bottom up traversal of the partial ordering hierarchy.  
 
 

IMPLEMENTATION 
 
As part of the Scalable Data Grid (SDG) toolkit, we 
are developing a prototype implementation of this agile 
data analysis framework. This framework is currently 
being tested within the Urban Resolve 2015 exercises. 
 
Meta-level Analysis Data Schema 
 
In designing this implementation, we have strived to 
maintain flexibility. Figure 4 depicts a relational 
schema that implements the Analysis Data Model. Ap-
proximately the top third of the figure describes the 
dimensions, and the bottom two-thirds describes the 
measures and facts. 
 
For efficiency reasons, data warehouse representation 
of multidimensional cubes typically use what is known 
as the star schema (Kimball et. al., 1998). The star 
schema explicitly defines one relational table for each 
dimension. For the sensor/target scoreboard, the star 
schema would use two dimension tables to define the 
sensor dimension and the target dimension. One inter-
pretation of the star schema is that it hard codes the 
two dimensions into the relational schema. 
 
Instead of hard coding, our approach is to define a 
meta-level schema that is capable defining and ex-
pressing multiple dimensions, see Figure 4. In our for-
mulation, the sensor and target dimensions are defined 
as data, i.e. rows in the meta-level relational table.  
 
The sdg_cube table represents multiple dimensional 
cube definitions. Each cube is defined by an ordered 
list of dimensions (sdg_dimensionDesc table). 
Each dimension has a name and an English description 
(sdg_dimension table). Each dimension is defined 
by a set for concrete and abstract coordinates 

(sdg_dimensionValue table). These hierarchical 
coordinates form a partial ordering 
(sdg_valuePartialOrdering table). Similar 
types of coordinates are grouped together and given a 
name (sdg_dimensionNode table).  For example, 
Figure 5 shows that concrete coordinates are grouped 
into the Entity node. Then, the Country node is used to 
group together coordinates for US, USSR, Iraq and so 
on. The partial ordering of the coordinates also induces 
a partial ordering of the nodes 
(sdg_PartialOrdering table). 
 
In a similar fashion we do not hard code measures, 
measure aggregation operators, and facts into fixed 
tables. We define meta-level tables to store these data 
models as data, see Figure 4. 
 
Analysis Data Model Editor 
 
The advantage of using a meta-model is that we can 
easily and quickly design analysis data models tailored 
to the needs of the analysts.  
 
Figure 5 shows a screen dump of our prototype SDG 
cube dimension editor. The editor presents to the user a 
tabbed view of the dimensions. Each tab corresponds 
to one dimension. The figure depicts a three-
dimensional sensor/target/detection status scoreboard. 
The detection status dimension breaks sensor contact 
reports down into four types: detected, not detected 
due to line of sight, not detected due to velocity, and 
not detected due to concealment.  
 
The top-half of each tab depicts the dimension as a 
tree-table. Each node/row in the tree-table represents a 
dimension coordinate.  For example, the entity vehi-
cle_Swenden_CIV_Bus has coordinate 37, and the 
entity vehicle_Sweden_CIV_sm_car has coor-
dinate 38. Both of these concrete coordinates belong to 
the abstract coordinate -44, called Sweden. Sweden 
in turn belongs to abstract coordinate -224, called 
Land. 
 
The tree-table has editing features that allows users to 
quickly define new coordinates or modify existing par-
tial orderings. Editing operations include adding a new 
node/row; editing the content of a table cell; promote a 
node up the hierarchy; and demoting a node. Cut and 
paste operations are also defined. 
 
The editor uses Java JDBC to directly connect to rela-
tional databases in order to load and to store the di-
mension definitions. 
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Figure 4. Meta-level Analysis Data Model Schema 
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Figure 5. Cube Dimension Editor 

 
 
 

DISTRIBUTED LOGGING AND ANALYSIS 
 
 
The goal of the Urban Resolve exercises is to evaluate 
how sensor capabilities can aid the war fighter in urban 
environments. Urban terrains are complex, and for 
realism they must be populated with many civilian en-
tities. The sensors should be able to detect enemy 
forces trying to blend into the hustle and bustle of city 
life. Simulating such urban environments requires tre-
mendous amount of distributed computer resources 
(Lucas & Davis, 2003). Urban Resolve exercises have 
been simultaneously running on multiple Linux clus-
ters from Maui High Performance Computer Center, 
ASC and USJFCOM J9. 
 
So far the paper has focused on creating a multidimen-
sional cube on a single computer.  To work in distrib-

uted environments we need to define an additional 
layer on top to aggregate multidimensional cubes dis-
tributed across different machines. 
 
The left-hand side of Figure 6 depicts a single three-
dimensional sensor/target/detection status score-cube. 
This cube is generated from data logged from the local 
simulation federate. It represents only a partial, incom-
plete view. To generate a complete view, cubes from 
other simulation federates have to be aggregated.  
 
The right-hand side of Figure 6 depicts a tree summing 
together all the distributed cubes. Again we can use of 
the associative and commutative properties of the ag-
gregation operator. We do not have to send the raw 
facts, which can be potentially bandwidth intensive. 
We only have to send the cubes themselves. 
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Figure 6. Distribute data analysis 

 
 

RELATED WORK 
 
Previous research in the simulation has focused on 
creating data frameworks to facilitate simulation feder-
ates participating in federations using different FOMs.  
 
Agile FOM Framework (AFF) describes a mapping 
methodology for translating back and forth between 
the internal federation SOM representation and the 
external FOM representation (Macannuco et al., 1998; 
Wilbert et al., 1999). Types of AFF mappings include 
naming convention mappings (i.e., Position to Lo-
cation), attribute group mappings (three attributes 
representing location to one vector attribute), unit con-
versions, byte swapping and so on. In the work de-
scribe in this paper, we do not address these types of 
mappings. Potentially, in our framework we could de-
fine an additional AFF layer. Instead storing the log-
ging data in the FOM representation, we would store 
the data after AFF mapping by means of the Agile 
FOM Interface. The advantage of storing AFF mapped 
data is two-folds. One is that AFF provides unit con-
versions. Analysts may prefer one unit measurement 
representation over another. The other is that some of 
our low-level processing tools, such SQL scripts, do 
not have to be rewritten to adapt different naming and 
grouping conventions. 
 
Another interoperability approach is to provide a com-
mon Object Model Data Dictionary from which SOM 
and FOM developers can choose to incorporate into 
their models (Hammond et. al., 1998). This approach 
can potentially work in tightly knit communities where 
developers can agree upon a common representation, 
and in domains where the modeled elements are rela-
tively static and do not change frequently.  
 

Conceptually similar approach to the AFF is to use 
more formal knowledge presentations to describe the 
FOM and SOM models (Rathnam and Paredis,  2004).  
This work defines a world ontology in which FOM and 
SOM ontologies can be expressed. Then, a formal 
mapping is defined between the SOM and FOM on-
tologies. 
 
 

CONCLUSION 
 
The ability to capture and log detail message traffic 
from very large scale simulations is exceeding our abil-
ity to analyze and comprehend that data. This paper 
describes a framework for quickly translating these 
operational-level log data into analyst-level data that 
are capable of supporting decision makers. The frame-
work explicitly defines a two-level data model that 
separates the operational logging data model from the 
analysis data model. The agility of the framework re-
sults from being able to isolate changes to the logging 
data model as a result of changes to the federation ob-
ject model, and from being able to quickly define 
analysis data model that match analyst notion of meas-
ure of effectiveness and of performance. 
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