

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2580 Page 1 of 11

Agile Data Logging and Analysis

Ke-Thia Yao, Gene Wagenbreth and Craig Ward
Information Sciences Institute

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

{kyao, genew & cward}@isi.edu

ABSTRACT

The High Level Architecture Object Model Template (HLA OMT) supports simulation interoperability by provid-
ing a Federation Object Model (FOM) to formally describe the information interchange (objects, object attributes,
interactions, and interaction parameters) within a simulation federation. Information used by a single federate within
the federation is defined by the Simulation Object Model (SOM).

Often the federate SOMs are mutually incompatible, so standing up a federation typically requires a tedious process
modifying the simulation federates to conform to the proposed FOM. A variety of agile FOM techniques have been
proposed to facilitate this integration process.

From the simulation data logging and analysis perspective, there is an analogous problem of adapting the analysis
tools to particular federations. Data analysis tools are designed in accordance with the analysts’ notion of Measures
of Effectiveness (MOE) and Measures of Performance (MOP). Often these measures are not directly compatible
with respect to the underlying federation object model. This is especially troublesome for the lower-level MOP,
which must have common characteristics with the logged FOM data.

This paper presents a two-layered framework that supports the agile adaptation of analysis tools to specific federa-
tions. The top semantic layer provides a modeling framework to capture concepts that analysts tend to use. The con-
cepts include measurements and dimensions. Examples of dimension include are object classifications, time, and
geographic containment. The lower syntactic layer describes how to map the particular federation object models to
more abstract semantic concepts. In addition, we show how this approach supports reuse by taking advantage of the
hierarchical nature of the object models. These concepts are now being successfully implemented and evaluated in
the Joint Forces Command Urban Resolve 2015 experiment.

ABOUT THE AUTHORS

Ke-Thia Yao is a research scientist in the University of Southern California Information Sciences Institute, working
on the JESPP project, which has the goal of supporting very large-scale distributed military simulation involving
millions of entities. Within the JESPP project he is developing a suite of monitoring/logging/analysis tools to help
users better understand the computational and behavioral properties of large-scale simulations. He received his B.S.
degree in EECS from UC Berkeley, and his M.S. and Ph.D. degrees in Computer Science from Rutgers University.

GENE WAGENBRETH is a Systems Analyst for Parallel Processing at the Information Sciences Institute at the
University of Southern California, doing research in the Computational Sciences Division. He specializes in tools
for distributed and shared memory parallelization of Fortran programs and has been active in benchmarking, opti-
mization and porting of software for private industry and government labs.

Craig E. Ward is a Parallel Computer Systems Analyst at the Information Sciences Institute of the University of
Southern California. He is active in programming on the Joint Experimentation on Scalable Parallel Processor pro-
ject, focusing on the data management issues. He has a B.A. in History from the University of California, Irvine,
and an M.S. in Computer Science from Loyola Marymount University.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2580 Page 2 of 11

Agile Data Logging and Analysis

Ke-Thia Yao
Information Sciences Institute, University of Southern California

Marina del Rey, California
kyao@isi.edu

INTRODUCTION

The High Level Architecture Object Model Template
(HLA OMT) supports simulation interoperability by
providing a Federation Object Model (FOM) to for-
mally describe the information interchange (objects,
object attributes, interactions, and interaction parame-
ters) within a simulation federation. Information used
by a single federate within the federation is defined by
the Simulation Object Model (SOM).

Often the federate SOMs are mutually incompatible, so
standing up a federation typically requires a tedious
process modifying the simulation federates to conform
to the proposed FOM. A variety of agile FOM tech-
niques have been proposed to facilitate this integration
process.

From the simulation data logging and analysis perspec-
tive, there is an analogous problem of adapting the
analysis tools to particular federations. Data analysis
tools are designed in accordance with the analysts’
notion of Measures of Effectiveness (MOE) and Meas-
ures of Performance (MOP). Often these measures are
not directly compatible with respect to the underlying
federation object model. This is especially troublesome
for the lower-level MOP, which must have common
characteristics with the logged FOM data.

This paper presents a two-layered framework that sup-
ports the agile adaptation of analysis tools to specific
federations. The top semantic layer provides a model-
ing framework to capture concepts that analysts tend to
use. The concepts include measurements and dimen-
sions. Examples of dimension include are object classi-
fications, time, and geographic containment.

The lower syntactic layer describes how to map the
particular federation object models to more abstract
semantic concepts. In addition, we show how this ap-
proach supports reuse by taking advantage of the hier-
archical nature of the object models. These concepts
are now being successfully implemented and evaluated
in the Joint Forces Command Urban Resolve 2015
experiment.

AGILE DATA FRAMEWORK

The type of measure of effectiveness/measure of per-
formance questions of interest to analysts are typically
not directly captured by simulation loggers. In general
analysts are interested in how well higher level mission
tasks and objects are satisfied. An MOE is a question,
or a measure, designed to illuminate how well particu-
lar mission tasks are satisfied with respect to a system
(Gentner et. al., 1996).

An MOP is typically a quantitative measure of a sys-
tem characteristic used to support an MOE. For exam-
ple, sample MOE questions are “Can the red forces be
pinned?”, or “Can the sensors detect red force move-
ment within urban environment?”. MOPs supporting
these MOEs are typically statistical in nature. They
may include percentage of red forces killed/damaged,
percentage of blue forces killed/damaged, time taken
for red forces to cross terrain, percentage of red forces
detected within sensor footprint, percentage of red
forces detected total, and percentage of detection by
sensor type by terrain type by time of day.

Simulation loggers do extremely well at capturing de-
tailed operational data. Our distributed data loggers
have captured terabytes of simulation data for the Ur-
ban Resolve Phase I exercises. Operational data in-
clude individual entity state changes and interactions
among the entities. Depending on the type of entity,
entity state changes may include location, orientation,
and velocity. For vehicles, additional attributes may
include external lights on and engine on. Interactions
may include collision, damage assessment, sensor de-
tection, and contact report. Only after appropriate
processing are these types of operational data of poten-
tial use to the analysts.

The logging data collected from the simulation is at too
low a level to be of direct use to the analysts. Informa-
tion needs to be abstracted from the logged data by
collation, aggregation and summarization. In order to
perform this data transformation an analysis data
model (ADM) has to be defined that is suitable for ana-
lysts and decision makers. We propose using a multi-
dimensional data model as way representing the infor-

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2580 Page 3 of 11

mation from their perspective, see Section Defining
the Analysis Data Model. Next, a logging data model
(LDM) of representing the collected data has to be de-
fined, see Section Logging Data Model. This logging
data model is defined in the context of HLA federa-
tions. In particular for the JSAF and SLAMEM simula-
tion federates for the Urban Resolve exercises. Then,
to bridge the gap and connect these two data models,
we define abstraction relationship that maps the log-
ging model to the analysis model, see Section
Mapping between LDM and ADM. The
Implementation Section describes our schema design
and an initial graphical data abstraction mapping tool,
as a part of the Scalable Data Grid toolkit (Yao and
Wagenbreth, 2005). Section Distributed Logging and
Analysis describes how these logging and analysis
data fit into the process of distributed simulation envi-
ronment used by US Joint Forces Command
(USJFCOM).

DEFINING THE ANALYSIS DATA MODEL

One of the key focus areas of Urban Resolve exercises
is to study the effectiveness of future Intelligence, Sur-
veillance and Reconnaissance (ISR) sensors in helping
soldiers operate in complex urban environments. The
Sensor/Target Scoreboard provides a visual way of
quickly comparing the relative effectiveness of indi-
vidual sensor platforms and sensor modes against dif-
ferent types of targets (Graebener et al., 2003; Grae-
bener et al., 2004). Sensor/Target Scoreboard is a spe-
cific instance of the more general multidimensional
analysis (Kimball et al., 1998). We use the Sen-
sor/Target Scoreboard to motivate the discussion. In a
2005 I/ITSEC paper, we described the data manage-
ment and analysis tool Scalable Data Grid that uses
multidimensional analysis (Yao and Wagenbreth,
2005).

In the Urban Resolve exercise, simulated sensor enti-
ties lay down sensor footprints to delimit sensor cover-
age sweep. For each target entity within the footprint, a
contact report is generated to hold the result of the sen-
sor detection. The contact report includes information
about the sensor entity, the platform the sensor entity is
mounted on, the sensor mode, the target entity, the
detection status, the perceived target type, the per-
ceived target location, the perceived target velocity,
and so on.

Sensor/Target scoreboards have the capability of pro-
viding summary views by aggregating individual sen-
sor platforms into sensor platform types, such as high
altitude, medium altitude, and low altitude. And, it
aggregates individual target entity objects into target

classes, which can range from the generic (like Civilian
Large Trucks) to the specific (like Russian MAZ-543
MEL).

The Sensor/Target scoreboard is an example of two-
dimensional of a multidimensional cube. Its two di-
mensions are the sensor dimension and target. One can
imagine extending the scoreboard to take into account,
say, weather conditions and time of day. This would
add two more dimensions to form a four-dimensional
cube.

We define our Analysis Data Model (ADM) in terms
of multidimensional analysis. The ADM model con-
sists of two key concepts dimensions of interest and
measures of performance. Dimensions are used to de-
fine the coordinates of multidimensional data cubes.
The cells within this data cube are the measure values.

Figure 1. Dimensions of Interest and Measures of

Performance

Dimensions of Interest

For large simulations, like the Urban Resolve exer-
cises, the magnitude of data collected ranges in the
terabytes. Dimensions categorize and partition the data
along lines of interest to the analysts. Defining multiple
crosscutting dimensions aids in breaking the data into
smaller orthogonal subsets.

Dimensions have associated measurement units, or
coordinates. Choosing the granularity of these units
aids in determining the size of the subsets. For exam-
ple, depending of the dynamic nature of the phenome-
non the analysts are trying to study, they may choose to

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2580 Page 4 of 11

define time dimension units in term of minutes, days,
weeks or years.

Another dimension example is in terms of simulation
entity groups. For the sensor dimension in the sen-
sor/target scoreboard, the analyst may want to group
together sensors by the type of platform: high-flying
UAVs (unmanned aerial vehicles), mid-altitude UAVs,
OAVs (organic air vehicles) and UGSs (unattended
ground sensors). The targets may be group together,
for example, by transportation mode: air, ground and
sea.

Hierarchical dimensions define how a coordinate re-
lates to other coordinates as its subset. It serves to
group together similar units from the analyst’s perspec-
tive. By defining hierarchical dimensions, analysts
inform the system on how to aggregate and summarize
information. For example, the analysts may want to
subdivide the sensor platform category into the sensor
modes: MTI (moving target indicators), SAR (syn-
thetic aperture radar), images, video, and acoustic.

Hierarchical dimensions can be viewed as a partial
ordering relationship. At the top node of the partial
ordering is the set containing all the coordinates. The
bottom nodes of the partial ordering are singleton sets
containing just one coordinate. Edges between nodes
indicate superset/subset relationship. A node’s parent is
its superset. A node’s child is its subset.

Nodes in hierarchical dimensions are also given coor-
dinates. We call coordinates for non-singleton nodes
abstract coordinates. Coordinates for singleton nodes
are the concrete coordinate of the single element in set.

Multiple decompositions of the same dimension are
also useful. For example, there may be many different
simulation federate types playing in the federation. The
analysts may want to verify how each federate re-
sponse to the sensor contacts, so they define the cate-
gory to be the type of federates.

Measures of Performance

After the data have been partitioned along lines of in-
terest, the data subsets may still be large. Measures
provide quantitative ways of characterizing the data
subsets. A key characteristic that measures should
have is that they are can be aggregated. The hierarchi-
cal crosscutting dimensions partition the data into a
hierarchy of subsets. The measure must be able to pro-
vide a meaningful summarization. To be computa-
tional efficient the measure aggregation operator must
satisfy the associative and commutative properties—

the measure of a set must be computable from the
measures its subsets.

In the case of the sensor/target scoreboard the measure
of performance is simply an integer count of the num-
ber of times a sensor has detected a target. The aggre-
gation operator is the addition operator.

Sometimes mean and variance performance measures
are of interest to analysts. For example, instead of inte-
ger detection counts, the sensor/target could be ex-
tended to maintain a floating-point number indicating
degree of uncertainty. Then, in this case it makes
sense to measure the mean and the variance of uncer-
tainty. As defined the mean and variance operators do
not satisfy the associative and commutative properties.
For example, given only the means of two subsets, it is
not possible to compute the mean of the union of the
two subsets. However, the mean and variance measures
are computable from other measures that are efficiently
computable. Mean can be computable from two asso-
ciative measures: the count of number of detections (or
uncertainties), and the sum of uncertainties. Variance
requires an additional sum of squares of uncertainty.
Let X be the uncertainty, and n be the count of number
of detections:

()
2

22)
;

n
XXn

Var
n
X

Mean ∑ ∑∑ −
==

Correlating Measures

Typically MOE decomposes into multiple performance
measures. If it is possible to decompose these measures
along the same dimensions, or sometimes called con-
forming dimensions, then it is possible to compare
these measures. Figure 1 depicts an additional damage
assessment measure. Potentially target entity, time and
location dimensions are applicable to both damage
assessment and sensor effectiveness. For example, an
analyst may ask how more likely are detected enemy
target entities to be damaged.

Let X be sensor effectiveness and Y be damage assess-
ment. If define an additional measure that is the sum of
X times Y, then we can determine covariance between
damage and detection by using the “mean” operator:

)()()(),(YMeanXMeanXYMeanYXCov −=

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2580 Page 5 of 11

LOGGING DATA MODEL

The Logging Data Model (LDM) describes the content
and format of data being logged by SDG. SDG uses
relational databases to store the logged data. In this
case, the LDM is a basically a relational schema.

Logging Data Model Generation

HLA rules state that the FOM shall document the
agreement among the federates on data to be ex-
changed at runtime. Our LDM is automatically gener-
ated from the FOM description. FOM describes objec-
tion classes and interactions. Classes have attributes,
and interactions have parameters. The attributes and
interactions are defined in terms of primitive data types
and complex data types.

For each object class we create one top-level table
within the relational schema. Simple primitive class
attributes mapped to columns in the table. Attributes
with complex data types many be either mapped to
multiple columns, or to rows in a sub-table. Complex
data types with fixed length and with low cardinality
are mapped to multiple columns in the top-level table.
For example, a location attribute with x,y,z coordinates
are mapped three columns. Complex data types with
high or unbounded cardinality, such as arrays, are
mapped to sub-tables. The sub-table contains keys
referencing the parent table, sequence column indicat-
ing the order in the array and data columns represent-
ing the actual data. Depending on the data type, it is
possible to have sub-table of sub-table tables. Interac-
tions and their corresponding parameters are handled
similarly to the object classes and their attributes.

The purpose of the relational schema is for the efficient
storage of log data intercepted during the federation
execution. It is not intended to capture all the informa-
tion contained within the FOM. Uschold (2004) points
out that the primary purpose of relational schema is
data integrity. For example, database foreign key con-
straints can be used to enforce that a row in a sub-table
must have a corresponding row in the parent table.
When deleting the parent row all the corresponding
sub-table rows must also be deleted. However, such
data integrity constraints are expensive to enforce. In
practice many applications such as the SDG identifies
these constraints during but does explicitly enforce
them on the collected data. However, we do use for-
eign key constraints on the Analysis Data Model.

Intercepting/Decoding HLA Messages

HLA rules state that all exchange of FOM data among
federates shall occur via the RTI, and that federates
shall interact with the RTI in accordance with the HLA
interface specification. RTI-s, a highly-scalable im-
plementation of the RTI (Helfinstine et. al., 2003),
provides an interceptor plug-in framework that exposes
calls to this HLA interface to registered plug-ins, see
Figure 2. SDG exploit this plug-in to intercept and log
messages federate attribute updates and interaction
sends. With respect to the RTI, the contents of these
messages are raw binary strings. RTI provides pub-
lish/subscribe facilities to exchanges these messages,
but not decode their contents. To provide query and
analysis capabilities, these messages must be decoded
with respect to FOM.

Figure 2. Logging data flow

MAPPING BETWEEN LDM AND ADM

The data intercepted from the simulation federates is
stored according to the Logging Data Model (LDM).
To provide useful information to the analysts the data
has to be abstracted and aggregated by translated it

into the Analysis Data Model (ADM). Figure 3 de-
picts the data flow for this translation process.

Message Extraction

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2580 Page 6 of 11

The purpose of the message source extraction is to
provide an interface layer that hides FOM variations
from the rest of mapping process. Message extrac-
tion performs include: filtering to keep on the col-
umns needed by the analysis data model, and parti-
tioning values. Currently, message extraction is im-
plemented using SQL select statements.

As described in the previous section log data is
stored within a relational database using a LDM
schema that is automatically generated from the
FOM. In practice, the information within the LDM
schema is a super set of the information needed by
analysis data model. Message extraction prunes away
columns that are not needed.

The rationale for partitioning is two-folds. One is the
numerical precision that simulators are capable of is
often not needed by the analysts who are interested in
summary and aggregate information. Message extrac-
tion take the initial processing step needed to map the
logged toward analyst’s notion of dimension of inter-
est. Second is such high precision generates large

cubes that takes huge storage space. The analysts
have to decide the minimum granularity he wishes to
examine the data.

Partitioning can be performed on single numerical
values, or vector values. The prototypical example of
single numerical value is time. JSAF typically keeps
time at the resolution of seconds. SDG logs message
on the order of milliseconds. An example of vector
values is geographical location. JSAF is capable of
sub-meter location resolution.

The partitions do not necessarily have to be uniform
and linear. To emphasize particular time periods and
locales where actions are taking place, analysts
should be able to define smaller grain partitions. For
example, in urban center where the battles occur the
grid size can be defined relatively small, say one
hundred meter squared or ten meter squared. Then
the grid size can progressively increased the locale
move towards the outskirts of the city.

Figure 3. Data flow for mapping data stored in the Logging Data Model to the Analysis Data Model

Fact Generation

The inputs to the fact generator are messages, and the
outputs are coordinates into the cube along with the
measures associated with the cube. Two operations that
the fact generator has to perform are: dimension regis-
tration and measure computation.

The purpose of dimension registration is to assign the
facts to their proper concrete coordinates. In the case of
sensor/target scoreboard, given a fact that states sensor
UAV-347 detected M1A1-tank-14, determine the cell
in the scoreboard that needs to be updated. The dimen-
sion registration involves two steps. The first is a pre-
computation step. All the partitions within a dimension

have to be assigned unique numbers or coordinates.
Second step is, given a fact, determine which partition
it belongs. For entity-based dimension, determining the
partition may just be a simple table lookup. For nu-
merical valued dimensions, algebraic or piecewise lin-
ear mapping functions may be used. For geo-location
dimensions, simple computational geometry contain-
ment may be used.

Once the dimension coordinates have been determined,
measure computation determines what value to put into
the cube cell. As we have seen in the analysis model
section many common measure can be computed using
simple polynomials. For counts the measure simply
returns the number one. For computing mean, the value
itself has to be returned. For variance, an additional

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2580 Page 7 of 11

square of the value is needed. For covariance, multi-
plying the two individual measures is needed.

Cube Computation

Facts are concrete observations from the simulation.
The facts have to be aggregated according to how hier-
archical dimensions are defined. The cells correspond-
ing to the abstract coordinates of the cube have to be
computed. Here we assume the aggregation operator
satisfies the associative and commutative properties.
Given these assumptions we can efficiently compute
measures for all the abstract coordinates by doing a
bottom up traversal of the partial ordering hierarchy.

IMPLEMENTATION

As part of the Scalable Data Grid (SDG) toolkit, we
are developing a prototype implementation of this agile
data analysis framework. This framework is currently
being tested within the Urban Resolve 2015 exercises.

Meta-level Analysis Data Schema

In designing this implementation, we have strived to
maintain flexibility. Figure 4 depicts a relational
schema that implements the Analysis Data Model. Ap-
proximately the top third of the figure describes the
dimensions, and the bottom two-thirds describes the
measures and facts.

For efficiency reasons, data warehouse representation
of multidimensional cubes typically use what is known
as the star schema (Kimball et. al., 1998). The star
schema explicitly defines one relational table for each
dimension. For the sensor/target scoreboard, the star
schema would use two dimension tables to define the
sensor dimension and the target dimension. One inter-
pretation of the star schema is that it hard codes the
two dimensions into the relational schema.

Instead of hard coding, our approach is to define a
meta-level schema that is capable defining and ex-
pressing multiple dimensions, see Figure 4. In our for-
mulation, the sensor and target dimensions are defined
as data, i.e. rows in the meta-level relational table.

The sdg_cube table represents multiple dimensional
cube definitions. Each cube is defined by an ordered
list of dimensions (sdg_dimensionDesc table).
Each dimension has a name and an English description
(sdg_dimension table). Each dimension is defined
by a set for concrete and abstract coordinates

(sdg_dimensionValue table). These hierarchical
coordinates form a partial ordering
(sdg_valuePartialOrdering table). Similar
types of coordinates are grouped together and given a
name (sdg_dimensionNode table). For example,
Figure 5 shows that concrete coordinates are grouped
into the Entity node. Then, the Country node is used to
group together coordinates for US, USSR, Iraq and so
on. The partial ordering of the coordinates also induces
a partial ordering of the nodes
(sdg_PartialOrdering table).

In a similar fashion we do not hard code measures,
measure aggregation operators, and facts into fixed
tables. We define meta-level tables to store these data
models as data, see Figure 4.

Analysis Data Model Editor

The advantage of using a meta-model is that we can
easily and quickly design analysis data models tailored
to the needs of the analysts.

Figure 5 shows a screen dump of our prototype SDG
cube dimension editor. The editor presents to the user a
tabbed view of the dimensions. Each tab corresponds
to one dimension. The figure depicts a three-
dimensional sensor/target/detection status scoreboard.
The detection status dimension breaks sensor contact
reports down into four types: detected, not detected
due to line of sight, not detected due to velocity, and
not detected due to concealment.

The top-half of each tab depicts the dimension as a
tree-table. Each node/row in the tree-table represents a
dimension coordinate. For example, the entity vehi-
cle_Swenden_CIV_Bus has coordinate 37, and the
entity vehicle_Sweden_CIV_sm_car has coor-
dinate 38. Both of these concrete coordinates belong to
the abstract coordinate -44, called Sweden. Sweden
in turn belongs to abstract coordinate -224, called
Land.

The tree-table has editing features that allows users to
quickly define new coordinates or modify existing par-
tial orderings. Editing operations include adding a new
node/row; editing the content of a table cell; promote a
node up the hierarchy; and demoting a node. Cut and
paste operations are also defined.

The editor uses Java JDBC to directly connect to rela-
tional databases in order to load and to store the di-
mension definitions.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2580 Page 8 of 11

Figure 4. Meta-level Analysis Data Model Schema

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2580 Page 9 of 11

Figure 5. Cube Dimension Editor

DISTRIBUTED LOGGING AND ANALYSIS

The goal of the Urban Resolve exercises is to evaluate
how sensor capabilities can aid the war fighter in urban
environments. Urban terrains are complex, and for
realism they must be populated with many civilian en-
tities. The sensors should be able to detect enemy
forces trying to blend into the hustle and bustle of city
life. Simulating such urban environments requires tre-
mendous amount of distributed computer resources
(Lucas & Davis, 2003). Urban Resolve exercises have
been simultaneously running on multiple Linux clus-
ters from Maui High Performance Computer Center,
ASC and USJFCOM J9.

So far the paper has focused on creating a multidimen-
sional cube on a single computer. To work in distrib-

uted environments we need to define an additional
layer on top to aggregate multidimensional cubes dis-
tributed across different machines.

The left-hand side of Figure 6 depicts a single three-
dimensional sensor/target/detection status score-cube.
This cube is generated from data logged from the local
simulation federate. It represents only a partial, incom-
plete view. To generate a complete view, cubes from
other simulation federates have to be aggregated.

The right-hand side of Figure 6 depicts a tree summing
together all the distributed cubes. Again we can use of
the associative and commutative properties of the ag-
gregation operator. We do not have to send the raw
facts, which can be potentially bandwidth intensive.
We only have to send the cubes themselves.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2580 Page 10 of 11

Figure 6. Distribute data analysis

RELATED WORK

Previous research in the simulation has focused on
creating data frameworks to facilitate simulation feder-
ates participating in federations using different FOMs.

Agile FOM Framework (AFF) describes a mapping
methodology for translating back and forth between
the internal federation SOM representation and the
external FOM representation (Macannuco et al., 1998;
Wilbert et al., 1999). Types of AFF mappings include
naming convention mappings (i.e., Position to Lo-
cation), attribute group mappings (three attributes
representing location to one vector attribute), unit con-
versions, byte swapping and so on. In the work de-
scribe in this paper, we do not address these types of
mappings. Potentially, in our framework we could de-
fine an additional AFF layer. Instead storing the log-
ging data in the FOM representation, we would store
the data after AFF mapping by means of the Agile
FOM Interface. The advantage of storing AFF mapped
data is two-folds. One is that AFF provides unit con-
versions. Analysts may prefer one unit measurement
representation over another. The other is that some of
our low-level processing tools, such SQL scripts, do
not have to be rewritten to adapt different naming and
grouping conventions.

Another interoperability approach is to provide a com-
mon Object Model Data Dictionary from which SOM
and FOM developers can choose to incorporate into
their models (Hammond et. al., 1998). This approach
can potentially work in tightly knit communities where
developers can agree upon a common representation,
and in domains where the modeled elements are rela-
tively static and do not change frequently.

Conceptually similar approach to the AFF is to use
more formal knowledge presentations to describe the
FOM and SOM models (Rathnam and Paredis, 2004).
This work defines a world ontology in which FOM and
SOM ontologies can be expressed. Then, a formal
mapping is defined between the SOM and FOM on-
tologies.

CONCLUSION

The ability to capture and log detail message traffic
from very large scale simulations is exceeding our abil-
ity to analyze and comprehend that data. This paper
describes a framework for quickly translating these
operational-level log data into analyst-level data that
are capable of supporting decision makers. The frame-
work explicitly defines a two-level data model that
separates the operational logging data model from the
analysis data model. The agility of the framework re-
sults from being able to isolate changes to the logging
data model as a result of changes to the federation ob-
ject model, and from being able to quickly define
analysis data model that match analyst notion of meas-
ure of effectiveness and of performance.

ACKNOWLEDGEMENTS

I would like to thank Dan Davis for his careful review
and thoughtful comments on this paper.

This material is based on research sponsored by the Air
Force Research Laboratory under agreement number
FA8750-05-2-0204. The U.S. Government is author-
ized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright nota-
tion thereon.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006

2006 Paper No. 2580 Page 11 of 11

The views and conclusions contained herein are those
of the authors and should not be interpreted as neces-
sarily representing the official policies or endorse-
ments, either expressed or implied, of the Air Force
Research Laboratory or the U.S. Government

REFERENCES

Graebener, R., Rafuse, G., Miller, R., & Yao, K.-T.

(2003). The Road to Successful Joint Experimenta-
tion Starts at the Data Collection Trail. Interser-
vice/Industry Training, Simulation, and Education
Conference.

Graebener, R., Rafuse, G., Miller, R., & Yao, K.-T.

(2003). The Road to Successful Joint Experimenta-
tion Starts at the Data Collection Trail—Part II. In-
terservice/Industry Training, Simulation, and Educa-
tion Conference.

Hammond, J., Dey, M., Scrudder, R., & Merkin, F.,

(1998). Populating the HLA Object Model Data Dic-
tionary—A Bottom-Up Approach. Simulation Inter-
operability Workshop. 98S-SIW-075.

Helfinstine, B., Torpey, M., & Wagenbreth, G. (2003).

Experimental Interest Management Architecture for
DCEE. Interservice/Industry Training, Simulation,
and Education Conference.

Kimbal, R., Reeves, L., Ross, M. & Thornwaite, W.
(1998) The Data Warehouse Lifecycle Toolkit. Ho-
boken, New Jersey: Wiley.

Macannuco, D., Dufault, B., & Ingraham, L. (1998).

An Agile FOM Framework. Simulation Interopera-
bility Workshop.

Lucas, R., & Davis, D. (2003). Joint Experimentation

in Scalable Parallel Processors. Interservice / Indus-
try Training, Simulation, and Education Conference.

Rathnam, T., & Paredis, C.J.J. (2004) Developing Fed-

eration Object Models Using Ontologies. Proceed-
ings of the 2004 Winter Simulation Conference.

Tan, G., Hu Y., & Moradi, F. (2003). Automatic SOM

Compatibility Check & FOM Development. Distrib-
uted Simulation and Real-Time Applications.

Wilbert, D., Macannuco, D. & Civinskas, W. (1999).

A Tool for Configuration FOM Agility. Simulation
Interoperability Workshop. 99F-SIW-116.

Yao, K.-T., & Wagenbreth, G. (2005). Simulation Data

Grid: Joint Experimentation Data Management and
Analysis. Interservice / Industry Training, Simula-
tion, and Education Conference.

	ABSTRACT
	ABOUT THE AUTHORS
	INTRODUCTION
	AGILE DATA FRAMEWORK
	DEFINING THE ANALYSIS DATA MODEL
	Dimensions of Interest
	Measures of Performance
	Correlating Measures

	LOGGING DATA MODEL
	Logging Data Model Generation
	Intercepting/Decoding HLA Messages

	MAPPING BETWEEN LDM AND ADM
	Message Extraction
	Fact Generation
	Cube Computation

	IMPLEMENTATION
	Meta-level Analysis Data Schema
	Analysis Data Model Editor

	DISTRIBUTED LOGGING AND ANALYSIS
	RELATED WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

