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ABSTRACT 

 

More computing power allows increases in the fidelity of simulations. Fast networking allows large clusters of high 

performance computing resources, often distributed across wide geographic areas, to be brought to bear on the 

simulations. This increase in fidelity has correspondingly increased the volumes of data simulations are capable of 

generating. Coordinating distant computing resources and making sense of this mass of data is a problem that must 

be addressed. Unless data are analyzed and converted into information, simulations will provide no useful 

knowledge. This paper reports on experiments using distributed analysis, particularly the Apache Hadoop 

framework, to address the analysis issues and suggests directions for enhancing the analysis capabilities to keep pace 

with the data generating capabilities found in modern simulation environments. Hadoop provides a scalable, but 

conceptually simple, distributed computation paradigm based on map/reduce operations implemented over a highly 

parallel, distributed filesystem. We developed map/reduce implementations of K-Means and Expectation-

Maximization data mining algorithms that take advantage of the Hadoop framework. The Hadoop filesystem 

dramatically improves the disk scan time needed by these iterative data mining algorithms. We ran these algorithms 

across multiple Linux clusters over specially reserved high speed networks. The results of these experiments point to 

potential enhancements for Hadoop and other analysis tools. 
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INTRODUCTION 

 

More computing power allows increases in the fidelity 

of simulations. Fast networking allows large clusters of 

high performance computing resources, often 

distributed across wide geographic areas, to be brought 

to bear on the simulations. This increase in fidelity has 

correspondingly increased the volumes of data that 

simulations are capable of generating.  

 

Coordinating distant computing resources and making 

sense of this mass of data is a problem that must be 

addressed. Unless data are analyzed and converted into 

information, simulations will provide no useful 

knowledge.  For the US Joint Forces Command 

(USJFCOM) Urban Resolve exercises we developed a 

distributed logging system to capture publish/subscribe 

messages from the High-Level Architecture (HLA) 

simulation federation.  For a two-week exercise, 

omitting nonessential data, we logged over a terabyte of 

data [Yao & Wagenbreth 2005]. 

 

This paper reports on experiments using distributed 

analysis, particularly the Apache Hadoop framework, to 

address the analysis issues and suggests directions for 

enhancing the analysis capabilities to keep pace with the 

data generating capabilities found in modern simulation 

environments. Hadoop provides a scalable, but 

conceptually simple, distributed computation paradigm 

based on map/reduce operations implemented over a 

highly parallel, distributed filesystem. We developed 

map/reduce implementations of K-Means and 

Expectation-Maximization data mining algorithms that 

take advantage of the Hadoop framework. The Hadoop 

filesystem dramatically improves the disk scan time 

needed by these iterative data mining algorithms. We 

ran these algorithms across multiple Linux clusters over 

specially reserved high speed networks. The results of 

these experiments point to potential enhancements for 

Hadoop and other analysis tools. 

 

Data mining Hadoop jobs were created to experiment 

with the performance characteristics of Hadoop in an 

environment that provided high-speed network 

connections to sites across large geographic regions. 

High performance Linux Cluster computers were 

installed at the Information Sciences Institute (ISI) in 

California, at the University of Illinois – Chicago (UIC) 

in Illinois, and ISI East in Virginia. The machine at ISI 

served as a control. Special network connectivity was 

established between UIC and ISI East to test Hadoop 

across a great geographic distance. 

 

OVERVIEW OF HADOOP 

 

Hadoop is an open source system, hosted by the Apache 

Software Foundation that provides a reliable, fault 

tolerant, distributed file system and application 

programming interfaces. These enable its map-reduce 

framework for analyzing large volumes of data in 

parallel. 

 

We found that the simplicity of the Hadoop 

programming model allows for straightforward 

implementations of many applications. Java 

applications have the most direct access, but Hadoop 

also has streaming capabilities that allow for 

implementations in any preferred language. 

 

Several organizations that need to handle large amounts 

of data are using map-reduce implementations to 

manage that data. Google started using a map-reduce 

system internally before 2004 [Dean 2004]. Yahoo runs 

the largest Hadoop cluster, running over a Linux cluster 

of over 10,000 cores [Yahoo 2008]. Vendors, such as 

Amazon, utilize Hadoop as part of their cloud 

computing service. A growing list of organizations 

making use of Hadoop can be found at the Hadoop wiki 

[Powered By, 2009]. In the 2008 terabyte sort 

challenge, Yahoo won by using Hadoop to sort 1 

terabyte of data in 209 seconds [O’Malley 2008]. That 

cluster consisted of 910 nodes with 2 quad core 2GHz 

Xeons and 4 SATA disks per node.  

 

Hadoop Distributed File System 

 

The Hadoop Distributed Files System (HDFS) runs on 

top of a native file system and is only accessible 

through the Hadoop Application Programming 

Interfaces (APIs).  

 

HDFS configurations distribute data in equally sized 

chunks across the available data nodes. This division of 

data works best for large files that can be stored as 
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multiples of the chunking size configured for the HDFS. 

If the files are smaller than the chunking size, the HDFS 

will waste local file system resources with empty, 

allocated bytes. 

 

Redundancy and fault tolerance are achieved by 

replicating these chunks on multiple nodes. Hadoop 

attempts to run the map operations on copies of the data 

local the mapping task. This reduces the amount of data 

that needs to be moved around. 

 

Our experiments used varying HDFS configurations. 

One configuration kept all nodes within a single rack. 

Another divided the nodes across half of the continental 

United States. 

 

Map-Reduce API 

 

Hadoop exposes three operations for implementing the 

map-reduce algorithm, mapping, combining, and 

reducing. The system is implemented in Java; however, 

Hadoop also exposes a streaming interface that allows 

programs written in any language to process each 

operation. 

 

The data are divided into chunks by the HDFS. Each 

map operation executes on a chunk of data, usually 

stored nearby. As the mapper iterates over the chunk, it 

assigns values to key elements. These key/value pairs 

may then be passed to a combine operation to collect 

the keys. A reduce operation combines the values for 

each key. 

 

A simple example is counting words in files of English 

text. 

 

As each file is processed, each word becomes a key 

with the value the count of how many times the word 

appeared in the file. These key value pairs, the words 

and associated counts, are sorted and passed to combine 

operation. (In this simple example, the combine step 

does not do anything significant. The K-Means jobs 

used for the experiments did take advantage of the 

operation.) Finally, the combined pairs are reduced with 

each key assigned the sum of the values of the 

preceding operations. The tutorial included with the 

Hadoop documentation goes into more detail. 

 

 

Hadoop Node Types 

 

Hadoop has three different node types: nodes for 

processing tasks, nodes for storing data, and a single 

node, called the name node, to coordinate the others. 

The tasks that are assigned to processing nodes are 

monitored for status. If a task appears to fail, it can be 

reassigned to another processing node. The assignments 

attempt to keep processing and data near each other, 

limiting the strain on any underlying communications 

resources, such as a network. 

 

DISTRIBUTED DATA MINING ALGORITHMS 

 

Data mining is a way of finding patterns in what 

otherwise would be random data. Many data mining 

algorithms are iterative in nature. They require the data 

to be scanned several times during the mining process. 

These algorithms can become prohibitively expensive 

for very large data sets that do not fit into memory, and 

have to be stored on disk.  Sequential disk access on a 

single disk can be several orders of magnitude slower 

than memory access. Hadoop with its potential to access 

thousands of disks in parallel provides a way of 

addressing this problem. 

 

In addition, in some situations the data themselves are 

stored in a distributed fashion. For example, for 

JFCOM’s Urban Resolve exercises, we implemented a 

distributed logger that stored High-Level Architecture 

Runtime Infrastructure (HLA RTI) messages locally 

where the messages were emitted [Yao & Wagenbreth 

2005; Graebener et al 2003]. Using Hadoop provides a 

convenient way to process the data without having to 

move it to a centralized location.   

 

Two Clustering Algorithms 

 

To test the feasibility of this approach we implement 

two data mining clustering algorithms in Hadoop: K-

Means and Expectation-Maximization (EM). 

 

K-Means is a popular data mining clustering algorithm 

that assigns a set of data instances into clusters (or 

subsets) based on some similarity metric. The K-Means 

algorithm requires three inputs: an integer k to indicate 

the number of desired clusters as output, a distance 

function over the data instances, and the set of n data 

instances to be clustered. The distance of a data instance 

to itself is zero. The greater the distance between two 

data instances, the less similar the instances are. 

Typically, a data instance is represented as a numerical 

vector. The output of the algorithm is a set of k points 

representing the mean (or the center) of the k clusters. 

Each of the n data instances is assigned to the nearest 

cluster mean based on the distance function. 

 

Here is pseudo code for the K-Means algorithm: 
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1. Generate an initial guess for the k cluster (for 

example, by randomly selecting k points from 

the data instances as the k means). 

2. Assign each of the n data instances to the 

nearest cluster mean. 

3. Based on the data instance assignment, 

compute the new cluster mean for each of the 

k clusters. 

4. While not done, go to Step 2. 

 

Figures 1 illustrates some results of K-Means clustering. 

Figure 1 shows K-Means correctly finding the means of 

the 3 distinct clusters. That is, given a set of points 

generated for this dataset, the algorithm correctly 

discovered the patterns in the points.  
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Figure 1 K-Means clustering of three distinct 

clusters of points. 

 

The EM algorithm can be viewed as a probabilistic 

generalization of the K-Means algorithm. Instead of 

representing a cluster by just its mean, EM represents a 

cluster by its mean and its variance (or covariance 

matrix), i.e. each cluster is represented by a Gaussian 

distribution. In addition, each cluster is associated with 

a weight, representing the probability of selecting the 

cluster. The sum of these k cluster weights is equal to 

one. This representation is called a Gaussian mixture 

model. 

 

The steps of the EM algorithm are similar to the K-

Means algorithm. In Step 1 the initial guess now 

includes the k means, k variances, and k cluster weights. 

The assignment in Step 2, also known as the 

Expectation Step, is now slightly more complicated. 

Instead of assigning each data point to one cluster, each 

data point is assigned to each cluster with a probability 

based on a Gaussian distribution. In Step 3, the 

Maximization Step, the k means, k variances, and k 

cluster weights are recomputed based on the 

probabilistic assignment from Step 2. 

 

Hadoop Implementation 

 

We shall only describe the Hadoop implementation of 

the K-Means algorithm. The structure of the EM 

Hadoop implementation is similar. 

 

There exists a variety of ways to generate the initial 

guess in Step 1. If there is a priori knowledge of the 

range of possible values of the data instance attributes, 

then we can generate k means randomly using a uniform 

distribution.  Otherwise, we can scan the data instances 

once to compute the range values. Or, we can scan the 

data instances and randomly select k instances as the 

means. To simplify the algorithm description we shall 

assume there is a priori knowledge. 

 

Step 1: 

     generate initial guess 

 

Step 2: 

      corresponds to the map operation. Map functions 

have the form: 

 

Map: (in-key, in-value)  list (out-key, out-value).   

 

In this case, the in-key is null, and the in-value is the 

data instance vector. The out-key is an integer from 1 to 

k representing the cluster identifier, and the out-value is 

a list of pairs, where each pair consists of the data 

instance vector and the integer one. 

 

K-Means Map: (null, data-instance)  list (cluster-id, 

(data-instance, 1)) 

 

Step 3: 

      corresponds to the reduce operation.  Reduce 

functions have the form: 

 

Reduce: (in-key, list (in-value))  list (out-key, out-

value> 

 

In this case the input (in-key, in-value) is the output of 

the K-Means Map (cluster-id, (data-instance, 1)). For 

each cluster-id, the reduce operation sums all the (data-

instance, 1) pairs associated with that cluster-id.  

 

K-Means Reduce: (cluster-id, (data-instance, count)) 

 list (cluster-id, (sum-of- data-instances, number-of-

instances)) 

 

Here the sum-of- data-instances divided by number-of-

instances is the mean of the cluster. 
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Here is a simple, but naïve, Hadoop implementation of 

the K-Means algorithm: 

1. Random generate k points as initial k means. 

2. Apply K-Means Map & Reduce. 

3. While not done, go to Step 2. 

 

A slightly more sophisticated Hadoop implementation 

would add a Combine operation in between the Map 

and the Reduce. In Hadoop the Map and the Reduce 

operations typically reside on different compute nodes. 

This naïve implementation would pass all n data 

instance pairs across the network from Map to Reduce. 

The Combine operation would reduce the amount of 

data that has to be transferred across the network. 

 

K-Means Combine: (cluster-id, (data-instance, count)) 

 list (cluster-id, (partial-sum-of- data-instances, 

partial-count-number-of-instances)) 

 

EXERCISING HADOOP 

 

Test Environment Setup 

 

Data mining Hadoop jobs were created for the SIMC-IC 

project to experiment with the performance 

characteristics of Hadoop in an environment that 

provided high-speed network connections to sites across 

large geographic regions. As mentioned before, clusters 

in California, Illinois and Virginia were connected via a 

high-bandwidth link. 

 

Each cluster machine was comprised of: 

 10 nodes 

 5.3 TB local disk 

 2 Clusters running Fedora 8 

 1 Cluster running Debian 

 1 10GigE network card 

 1 1Gig card for management only 

 Dual Quad Core (8 cores per node) CPUs 

 

The version of Hadoop used for the experiments was 

0.17.2.1. Each cluster used the Java SE Runtime 

Environment 1.6 (build 1.6.0_11-b03). 

 

Hadoop clusters were configured using the available 

nodes such that both the control Hadoop cluster and the 

distributed Hadoop cluster had the same number of 

nodes, one name node and nine nodes running data and 

job task services. The only difference being that the 

control cluster used only local network connections 

while the other used wide area network connections. 

 

For the wide area network Hadoop cluster, two 

configurations were used. One configuration used the 

default network resources and one used dedicated 

Internet 2 high-bandwidth lines reserved for short time 

periods. 

 

Data Load 

 

In addition to the data mining jobs developed, the 

ability of Hadoop to load and store data was tested. A 

simple data load of six 1.2-gigabyte files was performed 

using the default settings, each block of data replicated 

on three nodes. 

 

Data Load Test Results 

 

All time data was collected from the time(1) command. 

 

Table 1: Data Load Test Results 

 

 User System Elapsed 

ISI Local 44.85 22.09 2:05.69 

ISIE/UIC (standard) 46.98 18.38 14:27.75 

ISIE/UIC (fastnet) 49.18 18.94 29:20.78 

 

As would be expected, the quickest data loads were 

with the local nodes configuration. The actual 

processing times were not that much different for each 

configuration. The major difference was in clock time 

indicating that the distributed systems spent significant 

time in suspended wait states while the network 

subsystems performed their functions. The Fastnet 

version using Internet 2 actual took longer elapsed time 

than the standard version. However, during the 

execution of the Fastnet version, we did observe Java 

network exceptions being thrown. We will address this 

anomaly in the next section. 

 

Data Mining Jobs 

 

Two implementations of the K-Means algorithm were 

used to test the processing capabilities of Hadoop. An 

expectation-maximization job was also developed, but 

this job was not used for this experiment. The UIC 

Angle dataset was searched for points within the data 

where the data clustered. One implementation used a 

“naïve” approach while the other used a more efficient, 

“smart” approach. The naïve implementation did not 

use the combine step allowed by the Hadoop API. This 

resulted in much more network usage as more data had 

to be passed around between the task nodes. The smart 

implementation made use of this step and greatly 

reduced the amount of data exchanged. 
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The K-Means jobs iterated over the data set with an 

initial set of cluster points, each time updating the set of 

cluster points to better fit the data, each resulting set of 

cluster points becoming the input for the next iteration. 

When either the points stopped significantly changing 

or the maximum number of iterations was reached, the 

job stopped. 

 

For development and initial testing, the job was tested 

using points randomly generated using known center 

coordinates. The results of a run were expected to 

match the input provided to the random point generator. 

 

Table 2: K-Means Results 
 

 
User System Elapsed 

ISI Local (smart) 1.68 0.18 1:37.76 

ISI Local (naïve) 6.55 0.92 40:38.64 

ISIE/UIC (smart/stand) 1.67 0.19 1:52.80 

ISIE/UIC (smart/fastnet) 2.25 0.27 8:25.08 

ISIE/UIC (naive/stand) 5.35 0.96 1:12:03 

ISIE/UIC (naive/fastnet) 8.40 1.72 
2:14:16 

KILLED1 

 

As with the data loads, the data mining jobs performed 

best on the local nodes setup. The differences between 

local and networked systems are not as pronounced as 

with the data loads. This is likely due to the ability of 

Hadoop to process chunks of data in a “rack-aware” 

manner. The smart implementations tended to not 

require long haul network services and were able to 

process data in what to them was a local manner. Again, 

the Fastnet version took longer elapsed time than the 

standard version. We will address this anomaly in the 

next section.  

 

 

NETWORK UTILIZATION  

 

In the previous section our experiments exercised 

Hadoop across differing network configurations. One 

configuration used the “normal” connectivity found in 

the network while another ran Hadoop over special 

high-speed links with a theoretical peak throughput of 

10 Gbps. But, Hadoop results did not reflect the 

advantage of the high-speed links.  

 

                                                           
1
 The naive run was killed at the elapsed time in the 

seventh job iteration. The maximum number for a run is 

32. 

To rule out the possibility the high-speed links were 

faulty we used another software system to get 

independent measurements. The tool used to test this 

capability was the Meshrouter, which was designed for 

high throughput HLA RTI communications [Barrett & 

Gottschalk 2004; Brunett & Gottschalk 1998].  The 

tests show the Meshrouter application is capable of 

achieving 1.5Gbps with a single TCP stream, and up to 

5 Gbps with combined streams.  

 

Based on this throughput experiment we reasoned that 

Hadoop is not able to take advantage of the high-speed 

network. As mentioned previously we observed Java 

network exceptions during the execution. Although 

Hadoop is designed to be fault tolerant, the exceptions 

most likely slow downed its execution. 

 

Moreover, in order to achieve 50% capacity of the high-

speed network, the Meshrouter application required 

several TCP streams. We suspect that even without the 

network exceptions Hadoop will not be able to take full 

advantage of the high-speed network. 

 

Below, we describe the details of the high-speed 

network throughput experiment using the Meshrouter. 

The Meshrouter and associated applications implement 

interest managed communication (RTI) utilized by 

several entity simulators in general use.  Test programs 

named publish and subscribe were used to exercise the 

network in a controlled and repeatable manner. The 

Meshrouter is a complex real-world application.  

 

The bandwidth experiments were done using the 

standard ISI MeshRouter formalism for interest-

managed communications. A schematic of the 

MeshRouter is shown in Figure 3. 

 

 
Figure 2 Schematic MeshRouter Topology 

 

The overall communications scheme consists of 

collections of processors (labeled “SAFs” in this legacy 

diagram) each communicating with a specified 

“Primary” router (P). Interest-limited message exchange 
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among the various basic “Triads” is done using a 

network of additional “Pop-Up” and “Pull-Down” 

routers. As is described in [Barrett & Gottschalk 2004], 

the three routers on a triad are instanced as separate 

objects within a single MeshRouter process. 

 

The execution of actual message transfer is 

implemented by a software stack as shown in Figure 4. 

 

 
Figure 3 Factored MeshRouter implementation, 

with application-specific communications primitives. 

 

The results reported here use an RTI-s implementation 

for both interest enumeration and the lowest-level 

communications primitives (“dataflow nodes”). While 

this has enormous advantages, it does have the generic 

disadvantage of any general purpose “plug and play” 

system in terms of significant, incompletely understood, 

overheads. 

 

Standard RTI-s dataflow implementations exist for both 

TCP and UDP communications. The results presented 

here use the TCP implementation. 

 

The application processes for the benchmark tests are of 

two forms: 

 

Publish Processors: Send out messages of specified 

length and interest state. The nominal total publication 

rate (Mbyte/sec) is controlled by a data file that is re-

read periodically (by all publish processors). This means 

that the nominal experimental data rate can be 

controlled dynamically. 

 

Subscribe Processors: Receive messages for a specified 

interest state, collecting messages from multiple 

publishers, as appropriate. The subscribe processes are 

instrumented to measure actual incoming message rates 

and to detect missed messages. 

 

The routers in Figure 3 direct individual messages from 

publishers to subscribers according to the interest 

declarations. The router processes are also instrumented 

to determine the fraction of (wall clock) time spend in 

communications management (versus simply waiting for 

input). 

 

Two modes were tested. In the first mode, a single TCP 

connection was setup between a pair of meshrouters at 

distant locations. The measured bandwidth was 

approximately 300 megabits per second. The second 

mode used eight mesh routers at each site, each with 

multiple clients and multiple TCP connections. 

Measured aggregate bandwidth was approximately 4.6 

gigabits per second. 

 

This test demonstrated that 50% of the capacity of the 

high speed wide area network can be effectively 

employed by a real world application. 

 

PROGRAMMING HADOOP 

 

Hadoop was an easy system to use. Installation was 

straightforward. Although the rapid changes in Hadoop 

releases made keeping up problematic; some releases 

broke existing code. We did not install every updated 

release. 

 

Shell scripts were needed to reduce the complexity of 

setup, change, and maintenance of the various Hadoop 

configurations across sites. Once these were in place, 

changing configurations was a quick operation. 

 

Developing was convenient for Hadoop jobs. Running 

and debugging standalone Hadoop jobs in the Eclipse 

IDE allowed rapid turnaround on application bug fixes. 

 

CONCLUSIONS 

 

This paper reported on experiments using distributed 

data analysis/data mining implemented over the Apache 

Hadoop framework. We experienced that Hadoop 

provided a scalable, but conceptually simple, distributed 

computation paradigm based on map/reduce operations 

implemented over a highly parallel, distributed 

filesystem. We found it practical to develop map/reduce 

implementations of K-Means and Expectation-

Maximization data mining algorithms that take 

advantage the Hadoop framework. The Hadoop 

filesystem dramatically improved the disk scan time 

needed by these iterative data mining algorithms. We 

successfully ran these algorithms across multiple Linux 

clusters over high speed networks which had been 

reserved. We hold that the results of these experiments 

point to potential enhancements for Hadoop and other 

analysis tools. 
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SUGGESTIONS FOR FUTURE WORK 

 

It was our experience that the K-Means and EM 

Hadoop jobs are too tightly bound to a particular data 

set. Extending and generalizing these classes would 

make them amenable to a broader range of data. 

Hadoop’s Map operation actually is made up of a 

sequence of finer grained stages. These stages include a 

file splitter that splits large files into smaller chunks, 

and a recorder reader that extract records from the 

chunks based on a given input format specification.  We 

plan to make use of these preprocessing stages as a way 

to decouple the data parsing from the actual data mining 

algorithm. 

 

The underlying network subsystem of Hadoop could be 

extended so that it allows Hadoop to take full advantage 

of the network resources. The high-bandwidth 

configurations used in the experiments slowed down 

Hadoop. Possible approaches to enhance the 

capabilities of Hadoop when deployed on wide-area, 

high-speed networks include: 

 

 Adjusting how Hadoop utilizes the java.net 

and java.nio libraries such that, as with 

Meshrouters, Hadoop is able to treat one 

connection as a pipe with multiple TCP 

connections. 

 Add support for the UDT protocol, a reliable 

transport protocol built on UDP [Yunhong 

2007]. 

 

With these additional capabilities, Hadoop could more 

effectively support the data collection needs of 

complex, modern simulations 
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