
Data Analysis for Massively Distributed Simulations

Ke-Thia Yao, Robert F. Lucas, Craig E. Ward, Gene Wagenbreth Thomas D. Gottschalk

USC Information Sciences Institute California Institute of Technology

 Marina del Rey, California Pasadena, California

 {kyao,rflucas,cward,genew}@isi.edu tdg@cacr.caltech.edu

ABSTRACT

More computing power allows increases in the fidelity of simulations. Fast networking allows large clusters of high

performance computing resources, often distributed across wide geographic areas, to be brought to bear on the

simulations. This increase in fidelity has correspondingly increased the volumes of data simulations are capable of

generating. Coordinating distant computing resources and making sense of this mass of data is a problem that must

be addressed. Unless data are analyzed and converted into information, simulations will provide no useful

knowledge. This paper reports on experiments using distributed analysis, particularly the Apache Hadoop

framework, to address the analysis issues and suggests directions for enhancing the analysis capabilities to keep pace

with the data generating capabilities found in modern simulation environments. Hadoop provides a scalable, but

conceptually simple, distributed computation paradigm based on map/reduce operations implemented over a highly

parallel, distributed filesystem. We developed map/reduce implementations of K-Means and Expectation-

Maximization data mining algorithms that take advantage of the Hadoop framework. The Hadoop filesystem

dramatically improves the disk scan time needed by these iterative data mining algorithms. We ran these algorithms

across multiple Linux clusters over specially reserved high speed networks. The results of these experiments point to

potential enhancements for Hadoop and other analysis tools.

ABOUT THE AUTHORS

Ke-Thia Yao is a project leader and research scientist in the University of Southern California Information Sciences

Institute. He has worked developing a suite of monitoring/logging/analysis tools to help users better understand the

computational and behavioral properties of large-scale simulations. He received his B.S. degree in EECS from UC

Berkeley, and his M.S. and Ph.D. degrees in Computer Science from Rutgers University.

Robert Lucas is the Director of the Computational Sciences Division at the Information Sciences Institute (ISI).

There he manages research in computer architecture, VLSI, compilers and other software tools. He has been the

principal investigator on the JESPP project since its inception in 2002. Dr. Lucas received his BS, MS, and PhD

degrees in Electrical Engineering from Stanford University in 1980, 1983, and 1988 respectively.

Craig E. Ward is a Parallel Computer Systems Analyst at the Information Sciences Institute. Much of his recent

research has focused on large-scale data management. He has a B.A. in History from the University of California,

Irvine, and an M.S. in Computer Science from Loyola Marymount University.

Gene Wagenbreth is a Systems Analyst for Parallel Processing at the Information Sciences Institute, doing research

in the Computational Sciences Division. He has also been active in benchmarking, optimization and porting of

software for private industry and government labs. He received a BS in Math/Computer Science from the University

of Illinois in 1971.

Thomas D. Gottschalk is a Member of the Professional Staff, Center for Advanced Computing Research (CACR)

and Lecturer in Physics at the California Institute of Technology. He received a B.S. in Physics from Michigan State

University and a Ph.D. in Theoretical Physics from the University of Wisconsin.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9350 Page 1 of 7

Ke-Thia Yao, Robert F. Lucas, Craig E. Ward, Gene Wagenbreth Thomas D. Gottschalk

USC Information Sciences Institute California Institute of Technology

 Marina del Rey, California Pasadena, California

 {kyao,rflucas,cward,genew}@isi.edu tdg@cacr.caltech.edu

INTRODUCTION

More computing power allows increases in the fidelity

of simulations. Fast networking allows large clusters of

high performance computing resources, often

distributed across wide geographic areas, to be brought

to bear on the simulations. This increase in fidelity has

correspondingly increased the volumes of data that

simulations are capable of generating.

Coordinating distant computing resources and making

sense of this mass of data is a problem that must be

addressed. Unless data are analyzed and converted into

information, simulations will provide no useful

knowledge. For the US Joint Forces Command

(USJFCOM) Urban Resolve exercises we developed a

distributed logging system to capture publish/subscribe

messages from the High-Level Architecture (HLA)

simulation federation. For a two-week exercise,

omitting nonessential data, we logged over a terabyte of

data [Yao & Wagenbreth 2005].

This paper reports on experiments using distributed

analysis, particularly the Apache Hadoop framework, to

address the analysis issues and suggests directions for

enhancing the analysis capabilities to keep pace with the

data generating capabilities found in modern simulation

environments. Hadoop provides a scalable, but

conceptually simple, distributed computation paradigm

based on map/reduce operations implemented over a

highly parallel, distributed filesystem. We developed

map/reduce implementations of K-Means and

Expectation-Maximization data mining algorithms that

take advantage of the Hadoop framework. The Hadoop

filesystem dramatically improves the disk scan time

needed by these iterative data mining algorithms. We

ran these algorithms across multiple Linux clusters over

specially reserved high speed networks. The results of

these experiments point to potential enhancements for

Hadoop and other analysis tools.

Data mining Hadoop jobs were created to experiment

with the performance characteristics of Hadoop in an

environment that provided high-speed network

connections to sites across large geographic regions.

High performance Linux Cluster computers were

installed at the Information Sciences Institute (ISI) in

California, at the University of Illinois – Chicago (UIC)

in Illinois, and ISI East in Virginia. The machine at ISI

served as a control. Special network connectivity was

established between UIC and ISI East to test Hadoop

across a great geographic distance.

OVERVIEW OF HADOOP

Hadoop is an open source system, hosted by the Apache

Software Foundation that provides a reliable, fault

tolerant, distributed file system and application

programming interfaces. These enable its map-reduce

framework for analyzing large volumes of data in

parallel.

We found that the simplicity of the Hadoop

programming model allows for straightforward

implementations of many applications. Java

applications have the most direct access, but Hadoop

also has streaming capabilities that allow for

implementations in any preferred language.

Several organizations that need to handle large amounts

of data are using map-reduce implementations to

manage that data. Google started using a map-reduce

system internally before 2004 [Dean 2004]. Yahoo runs

the largest Hadoop cluster, running over a Linux cluster

of over 10,000 cores [Yahoo 2008]. Vendors, such as

Amazon, utilize Hadoop as part of their cloud

computing service. A growing list of organizations

making use of Hadoop can be found at the Hadoop wiki

[Powered By, 2009]. In the 2008 terabyte sort

challenge, Yahoo won by using Hadoop to sort 1

terabyte of data in 209 seconds [O’Malley 2008]. That

cluster consisted of 910 nodes with 2 quad core 2GHz

Xeons and 4 SATA disks per node.

Hadoop Distributed File System

The Hadoop Distributed Files System (HDFS) runs on

top of a native file system and is only accessible

through the Hadoop Application Programming

Interfaces (APIs).

HDFS configurations distribute data in equally sized

chunks across the available data nodes. This division of

data works best for large files that can be stored as

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9350 Page 2 of 7

multiples of the chunking size configured for the HDFS.

If the files are smaller than the chunking size, the HDFS

will waste local file system resources with empty,

allocated bytes.

Redundancy and fault tolerance are achieved by

replicating these chunks on multiple nodes. Hadoop

attempts to run the map operations on copies of the data

local the mapping task. This reduces the amount of data

that needs to be moved around.

Our experiments used varying HDFS configurations.

One configuration kept all nodes within a single rack.

Another divided the nodes across half of the continental

United States.

Map-Reduce API

Hadoop exposes three operations for implementing the

map-reduce algorithm, mapping, combining, and

reducing. The system is implemented in Java; however,

Hadoop also exposes a streaming interface that allows

programs written in any language to process each

operation.

The data are divided into chunks by the HDFS. Each

map operation executes on a chunk of data, usually

stored nearby. As the mapper iterates over the chunk, it

assigns values to key elements. These key/value pairs

may then be passed to a combine operation to collect

the keys. A reduce operation combines the values for

each key.

A simple example is counting words in files of English

text.

As each file is processed, each word becomes a key

with the value the count of how many times the word

appeared in the file. These key value pairs, the words

and associated counts, are sorted and passed to combine

operation. (In this simple example, the combine step

does not do anything significant. The K-Means jobs

used for the experiments did take advantage of the

operation.) Finally, the combined pairs are reduced with

each key assigned the sum of the values of the

preceding operations. The tutorial included with the

Hadoop documentation goes into more detail.

Hadoop Node Types

Hadoop has three different node types: nodes for

processing tasks, nodes for storing data, and a single

node, called the name node, to coordinate the others.

The tasks that are assigned to processing nodes are

monitored for status. If a task appears to fail, it can be

reassigned to another processing node. The assignments

attempt to keep processing and data near each other,

limiting the strain on any underlying communications

resources, such as a network.

DISTRIBUTED DATA MINING ALGORITHMS

Data mining is a way of finding patterns in what

otherwise would be random data. Many data mining

algorithms are iterative in nature. They require the data

to be scanned several times during the mining process.

These algorithms can become prohibitively expensive

for very large data sets that do not fit into memory, and

have to be stored on disk. Sequential disk access on a

single disk can be several orders of magnitude slower

than memory access. Hadoop with its potential to access

thousands of disks in parallel provides a way of

addressing this problem.

In addition, in some situations the data themselves are

stored in a distributed fashion. For example, for

JFCOM’s Urban Resolve exercises, we implemented a

distributed logger that stored High-Level Architecture

Runtime Infrastructure (HLA RTI) messages locally

where the messages were emitted [Yao & Wagenbreth

2005; Graebener et al 2003]. Using Hadoop provides a

convenient way to process the data without having to

move it to a centralized location.

Two Clustering Algorithms

To test the feasibility of this approach we implement

two data mining clustering algorithms in Hadoop: K-

Means and Expectation-Maximization (EM).

K-Means is a popular data mining clustering algorithm

that assigns a set of data instances into clusters (or

subsets) based on some similarity metric. The K-Means

algorithm requires three inputs: an integer k to indicate

the number of desired clusters as output, a distance

function over the data instances, and the set of n data

instances to be clustered. The distance of a data instance

to itself is zero. The greater the distance between two

data instances, the less similar the instances are.

Typically, a data instance is represented as a numerical

vector. The output of the algorithm is a set of k points

representing the mean (or the center) of the k clusters.

Each of the n data instances is assigned to the nearest

cluster mean based on the distance function.

Here is pseudo code for the K-Means algorithm:

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9350 Page 3 of 7

1. Generate an initial guess for the k cluster (for

example, by randomly selecting k points from

the data instances as the k means).

2. Assign each of the n data instances to the

nearest cluster mean.

3. Based on the data instance assignment,

compute the new cluster mean for each of the

k clusters.

4. While not done, go to Step 2.

Figures 1 illustrates some results of K-Means clustering.

Figure 1 shows K-Means correctly finding the means of

the 3 distinct clusters. That is, given a set of points

generated for this dataset, the algorithm correctly

discovered the patterns in the points.

-2000

-1000

0

1000

2000

3000

4000

5000

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

Clustering of 3 Clusters

Figure 1 K-Means clustering of three distinct

clusters of points.

The EM algorithm can be viewed as a probabilistic

generalization of the K-Means algorithm. Instead of

representing a cluster by just its mean, EM represents a

cluster by its mean and its variance (or covariance

matrix), i.e. each cluster is represented by a Gaussian

distribution. In addition, each cluster is associated with

a weight, representing the probability of selecting the

cluster. The sum of these k cluster weights is equal to

one. This representation is called a Gaussian mixture

model.

The steps of the EM algorithm are similar to the K-

Means algorithm. In Step 1 the initial guess now

includes the k means, k variances, and k cluster weights.

The assignment in Step 2, also known as the

Expectation Step, is now slightly more complicated.

Instead of assigning each data point to one cluster, each

data point is assigned to each cluster with a probability

based on a Gaussian distribution. In Step 3, the

Maximization Step, the k means, k variances, and k

cluster weights are recomputed based on the

probabilistic assignment from Step 2.

Hadoop Implementation

We shall only describe the Hadoop implementation of

the K-Means algorithm. The structure of the EM

Hadoop implementation is similar.

There exists a variety of ways to generate the initial

guess in Step 1. If there is a priori knowledge of the

range of possible values of the data instance attributes,

then we can generate k means randomly using a uniform

distribution. Otherwise, we can scan the data instances

once to compute the range values. Or, we can scan the

data instances and randomly select k instances as the

means. To simplify the algorithm description we shall

assume there is a priori knowledge.

Step 1:

 generate initial guess

Step 2:

 corresponds to the map operation. Map functions

have the form:

Map: (in-key, in-value) list (out-key, out-value).

In this case, the in-key is null, and the in-value is the

data instance vector. The out-key is an integer from 1 to

k representing the cluster identifier, and the out-value is

a list of pairs, where each pair consists of the data

instance vector and the integer one.

K-Means Map: (null, data-instance) list (cluster-id,

(data-instance, 1))

Step 3:

 corresponds to the reduce operation. Reduce

functions have the form:

Reduce: (in-key, list (in-value)) list (out-key, out-

value>

In this case the input (in-key, in-value) is the output of

the K-Means Map (cluster-id, (data-instance, 1)). For

each cluster-id, the reduce operation sums all the (data-

instance, 1) pairs associated with that cluster-id.

K-Means Reduce: (cluster-id, (data-instance, count))

 list (cluster-id, (sum-of- data-instances, number-of-

instances))

Here the sum-of- data-instances divided by number-of-

instances is the mean of the cluster.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9350 Page 4 of 7

Here is a simple, but naïve, Hadoop implementation of

the K-Means algorithm:

1. Random generate k points as initial k means.

2. Apply K-Means Map & Reduce.

3. While not done, go to Step 2.

A slightly more sophisticated Hadoop implementation

would add a Combine operation in between the Map

and the Reduce. In Hadoop the Map and the Reduce

operations typically reside on different compute nodes.

This naïve implementation would pass all n data

instance pairs across the network from Map to Reduce.

The Combine operation would reduce the amount of

data that has to be transferred across the network.

K-Means Combine: (cluster-id, (data-instance, count))

 list (cluster-id, (partial-sum-of- data-instances,

partial-count-number-of-instances))

EXERCISING HADOOP

Test Environment Setup

Data mining Hadoop jobs were created for the SIMC-IC

project to experiment with the performance

characteristics of Hadoop in an environment that

provided high-speed network connections to sites across

large geographic regions. As mentioned before, clusters

in California, Illinois and Virginia were connected via a

high-bandwidth link.

Each cluster machine was comprised of:

 10 nodes

 5.3 TB local disk

 2 Clusters running Fedora 8

 1 Cluster running Debian

 1 10GigE network card

 1 1Gig card for management only

 Dual Quad Core (8 cores per node) CPUs

The version of Hadoop used for the experiments was

0.17.2.1. Each cluster used the Java SE Runtime

Environment 1.6 (build 1.6.0_11-b03).

Hadoop clusters were configured using the available

nodes such that both the control Hadoop cluster and the

distributed Hadoop cluster had the same number of

nodes, one name node and nine nodes running data and

job task services. The only difference being that the

control cluster used only local network connections

while the other used wide area network connections.

For the wide area network Hadoop cluster, two

configurations were used. One configuration used the

default network resources and one used dedicated

Internet 2 high-bandwidth lines reserved for short time

periods.

Data Load

In addition to the data mining jobs developed, the

ability of Hadoop to load and store data was tested. A

simple data load of six 1.2-gigabyte files was performed

using the default settings, each block of data replicated

on three nodes.

Data Load Test Results

All time data was collected from the time(1) command.

Table 1: Data Load Test Results

 User System Elapsed

ISI Local 44.85 22.09 2:05.69

ISIE/UIC (standard) 46.98 18.38 14:27.75

ISIE/UIC (fastnet) 49.18 18.94 29:20.78

As would be expected, the quickest data loads were

with the local nodes configuration. The actual

processing times were not that much different for each

configuration. The major difference was in clock time

indicating that the distributed systems spent significant

time in suspended wait states while the network

subsystems performed their functions. The Fastnet

version using Internet 2 actual took longer elapsed time

than the standard version. However, during the

execution of the Fastnet version, we did observe Java

network exceptions being thrown. We will address this

anomaly in the next section.

Data Mining Jobs

Two implementations of the K-Means algorithm were

used to test the processing capabilities of Hadoop. An

expectation-maximization job was also developed, but

this job was not used for this experiment. The UIC

Angle dataset was searched for points within the data

where the data clustered. One implementation used a

“naïve” approach while the other used a more efficient,

“smart” approach. The naïve implementation did not

use the combine step allowed by the Hadoop API. This

resulted in much more network usage as more data had

to be passed around between the task nodes. The smart

implementation made use of this step and greatly

reduced the amount of data exchanged.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9350 Page 5 of 7

The K-Means jobs iterated over the data set with an

initial set of cluster points, each time updating the set of

cluster points to better fit the data, each resulting set of

cluster points becoming the input for the next iteration.

When either the points stopped significantly changing

or the maximum number of iterations was reached, the

job stopped.

For development and initial testing, the job was tested

using points randomly generated using known center

coordinates. The results of a run were expected to

match the input provided to the random point generator.

Table 2: K-Means Results

User System Elapsed

ISI Local (smart) 1.68 0.18 1:37.76

ISI Local (naïve) 6.55 0.92 40:38.64

ISIE/UIC (smart/stand) 1.67 0.19 1:52.80

ISIE/UIC (smart/fastnet) 2.25 0.27 8:25.08

ISIE/UIC (naive/stand) 5.35 0.96 1:12:03

ISIE/UIC (naive/fastnet) 8.40 1.72
2:14:16

KILLED1

As with the data loads, the data mining jobs performed

best on the local nodes setup. The differences between

local and networked systems are not as pronounced as

with the data loads. This is likely due to the ability of

Hadoop to process chunks of data in a “rack-aware”

manner. The smart implementations tended to not

require long haul network services and were able to

process data in what to them was a local manner. Again,

the Fastnet version took longer elapsed time than the

standard version. We will address this anomaly in the

next section.

NETWORK UTILIZATION

In the previous section our experiments exercised

Hadoop across differing network configurations. One

configuration used the “normal” connectivity found in

the network while another ran Hadoop over special

high-speed links with a theoretical peak throughput of

10 Gbps. But, Hadoop results did not reflect the

advantage of the high-speed links.

1
 The naive run was killed at the elapsed time in the

seventh job iteration. The maximum number for a run is

32.

To rule out the possibility the high-speed links were

faulty we used another software system to get

independent measurements. The tool used to test this

capability was the Meshrouter, which was designed for

high throughput HLA RTI communications [Barrett &

Gottschalk 2004; Brunett & Gottschalk 1998]. The

tests show the Meshrouter application is capable of

achieving 1.5Gbps with a single TCP stream, and up to

5 Gbps with combined streams.

Based on this throughput experiment we reasoned that

Hadoop is not able to take advantage of the high-speed

network. As mentioned previously we observed Java

network exceptions during the execution. Although

Hadoop is designed to be fault tolerant, the exceptions

most likely slow downed its execution.

Moreover, in order to achieve 50% capacity of the high-

speed network, the Meshrouter application required

several TCP streams. We suspect that even without the

network exceptions Hadoop will not be able to take full

advantage of the high-speed network.

Below, we describe the details of the high-speed

network throughput experiment using the Meshrouter.

The Meshrouter and associated applications implement

interest managed communication (RTI) utilized by

several entity simulators in general use. Test programs

named publish and subscribe were used to exercise the

network in a controlled and repeatable manner. The

Meshrouter is a complex real-world application.

The bandwidth experiments were done using the

standard ISI MeshRouter formalism for interest-

managed communications. A schematic of the

MeshRouter is shown in Figure 3.

Figure 2 Schematic MeshRouter Topology

The overall communications scheme consists of

collections of processors (labeled “SAFs” in this legacy

diagram) each communicating with a specified

“Primary” router (P). Interest-limited message exchange

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9350 Page 6 of 7

among the various basic “Triads” is done using a

network of additional “Pop-Up” and “Pull-Down”

routers. As is described in [Barrett & Gottschalk 2004],

the three routers on a triad are instanced as separate

objects within a single MeshRouter process.

The execution of actual message transfer is

implemented by a software stack as shown in Figure 4.

Figure 3 Factored MeshRouter implementation,

with application-specific communications primitives.

The results reported here use an RTI-s implementation

for both interest enumeration and the lowest-level

communications primitives (“dataflow nodes”). While

this has enormous advantages, it does have the generic

disadvantage of any general purpose “plug and play”

system in terms of significant, incompletely understood,

overheads.

Standard RTI-s dataflow implementations exist for both

TCP and UDP communications. The results presented

here use the TCP implementation.

The application processes for the benchmark tests are of

two forms:

Publish Processors: Send out messages of specified

length and interest state. The nominal total publication

rate (Mbyte/sec) is controlled by a data file that is re-

read periodically (by all publish processors). This means

that the nominal experimental data rate can be

controlled dynamically.

Subscribe Processors: Receive messages for a specified

interest state, collecting messages from multiple

publishers, as appropriate. The subscribe processes are

instrumented to measure actual incoming message rates

and to detect missed messages.

The routers in Figure 3 direct individual messages from

publishers to subscribers according to the interest

declarations. The router processes are also instrumented

to determine the fraction of (wall clock) time spend in

communications management (versus simply waiting for

input).

Two modes were tested. In the first mode, a single TCP

connection was setup between a pair of meshrouters at

distant locations. The measured bandwidth was

approximately 300 megabits per second. The second

mode used eight mesh routers at each site, each with

multiple clients and multiple TCP connections.

Measured aggregate bandwidth was approximately 4.6

gigabits per second.

This test demonstrated that 50% of the capacity of the

high speed wide area network can be effectively

employed by a real world application.

PROGRAMMING HADOOP

Hadoop was an easy system to use. Installation was

straightforward. Although the rapid changes in Hadoop

releases made keeping up problematic; some releases

broke existing code. We did not install every updated

release.

Shell scripts were needed to reduce the complexity of

setup, change, and maintenance of the various Hadoop

configurations across sites. Once these were in place,

changing configurations was a quick operation.

Developing was convenient for Hadoop jobs. Running

and debugging standalone Hadoop jobs in the Eclipse

IDE allowed rapid turnaround on application bug fixes.

CONCLUSIONS

This paper reported on experiments using distributed

data analysis/data mining implemented over the Apache

Hadoop framework. We experienced that Hadoop

provided a scalable, but conceptually simple, distributed

computation paradigm based on map/reduce operations

implemented over a highly parallel, distributed

filesystem. We found it practical to develop map/reduce

implementations of K-Means and Expectation-

Maximization data mining algorithms that take

advantage the Hadoop framework. The Hadoop

filesystem dramatically improved the disk scan time

needed by these iterative data mining algorithms. We

successfully ran these algorithms across multiple Linux

clusters over high speed networks which had been

reserved. We hold that the results of these experiments

point to potential enhancements for Hadoop and other

analysis tools.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9350 Page 7 of 7

SUGGESTIONS FOR FUTURE WORK

It was our experience that the K-Means and EM

Hadoop jobs are too tightly bound to a particular data

set. Extending and generalizing these classes would

make them amenable to a broader range of data.

Hadoop’s Map operation actually is made up of a

sequence of finer grained stages. These stages include a

file splitter that splits large files into smaller chunks,

and a recorder reader that extract records from the

chunks based on a given input format specification. We

plan to make use of these preprocessing stages as a way

to decouple the data parsing from the actual data mining

algorithm.

The underlying network subsystem of Hadoop could be

extended so that it allows Hadoop to take full advantage

of the network resources. The high-bandwidth

configurations used in the experiments slowed down

Hadoop. Possible approaches to enhance the

capabilities of Hadoop when deployed on wide-area,

high-speed networks include:

 Adjusting how Hadoop utilizes the java.net

and java.nio libraries such that, as with

Meshrouters, Hadoop is able to treat one

connection as a pipe with multiple TCP

connections.

 Add support for the UDT protocol, a reliable

transport protocol built on UDP [Yunhong

2007].

With these additional capabilities, Hadoop could more

effectively support the data collection needs of

complex, modern simulations

ACKNOWLEDGEMENTS

We would like to thank our colleagues at UIC,

especially Professor Robert Grossman and the Messers

Michael Sabala and Yuhong Gu. Further, this work

would not have been possible without the assistance of

Tom Lehman of ISI East. This material is based in part

on research sponsored by the Air Force Research

Laboratory under agreement number FA8750-05-2-

0204. The U.S. Government is authorized to reproduce

and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon. The

views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily

representing the official policies or endorsements, either

expressed or implied, of the Air Force Research

Laboratory or the U.S. Government.

REFERENCES

Barrett, B. & Gottschalk, T. (2004). Advanced Message

Routing for Scalable Distributed Simulations. In

Proceedings of the Interservice / Industry Training,

Simulation and Education Conference, Orlando, FL.

Brunett, S. & Gottschalk, T. (1998) A Large-scale

Metacomputing Framework for the ModSAF Real-

time Simulation . In Parallel Computing: V24:1873-

1900.

Chu, C., & Kim, S., et. al. (2006). Map-Reduce for

Machine Learning on Multicore. Retrieved June 15,

2009, from

http://www.cs.stanford.edu/people/ang/papers/nips06

-mapreducemulticore.pdf

Dean, J., Ghemawat S. (2004) MapReduce: Simplified

Data Processing on Large Clusters. Operating System

Design and Implementation. Retrieved 25 June 2009

from

 http://labs.google.com/papers/mapreduce.html

Graebener, R., Rafuse, G., Miller, R. & Yao, K-T.

(2003) The Road to Successful Joint Experimentation

Starts at the Data Collection Trail. In Proceedings of

the Interservice/Industry Training, Simulation and

Education Conference, Orlando, Florida.

Hadoop Map-Reduce Tutorial (2007) Retrieved 25 June

2009 from

http://hadoop.apache.org/core/docs/r0.17.1/mapred_t

utorial.pdf.

The Hadoop Distributed File System: Architecture and

Design (2007) Retrieved 25 June 2009 from

http://hadoop.apache.org/core/docs/r0.17.1/hdfs_desi

gn.pdf.

O’Malley, O. (2008) TeraByte Sort on Apache Hadoop.

Retrieved 29 June 2009 at

http://www.hpl.hp.com/hosted/sortbenchmark/Yahoo

Hadoop.pdf.

Powered By, 2009. Retrieved 29 June 2009 at

http://wiki.apache.org/hadoop/PoweredBy.

Yao, KT., & Wagenbreth, G. (2005)Simulation Data

Grid: Joint Experimentation Data Management and

Analysis. In Proceedings of the Interservice/Industry

Training, Simulation and Education Conference,

Orlando, FL.

Yahoo! Launches World's Largest Hadoop Production

Application, 2008. Retrieved 29 June 2009 from

http://developer.yahoo.net/blogs/hadoop/2008/02/yah

oo-worlds-largest-production-hadoop.html.

Yunhong G., Grossman R. 2007. UDT: UDP-based

Data Transfer for High-Speed Wide Area Networks,

Computer Networks (Elsevier). Volume 51, Issue 7.

http://www.cs.stanford.edu/people/ang/papers/nips06-mapreducemulticore.pdf
http://www.cs.stanford.edu/people/ang/papers/nips06-mapreducemulticore.pdf
http://labs.google.com/papers/mapreduce.html
http://hadoop.apache.org/core/docs/r0.17.1/mapred_tutorial.pdf
http://hadoop.apache.org/core/docs/r0.17.1/mapred_tutorial.pdf
http://hadoop.apache.org/core/docs/r0.17.1/hdfs_design.pdf
http://hadoop.apache.org/core/docs/r0.17.1/hdfs_design.pdf
http://www.hpl.hp.com/hosted/sortbenchmark/YahooHadoop.pdf
http://www.hpl.hp.com/hosted/sortbenchmark/YahooHadoop.pdf
http://wiki.apache.org/hadoop/PoweredBy
http://developer.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html
http://developer.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html

