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1 Introduction

The set of technologies comprising the Java programming environment  provides

multiple approaches to programmatic access to database systems. All of these approaches

can not be equally appropriate for all database systems. Choosing an approach depends

on the requirements of the particular database system in question.

Java technologies allow for relatively simple, direct access to the database using the

Java Database Connectivity (JDBC) API either by direct use of the API or the direct

embedding of SQL code using the SQLJ wrapper. The Enterprise Java Beans (EJB) of

Java 2 Enterprise Edition (J2EE) and the more recent Java Data Objects (JDO) provide

the ability to create n-tiered architectures. There are also two kinds of EJBs. Entity beans

represent objects or records that need to persist in a database and Session beans that only

exist during the life cycle of one transaction or session of an application.

These technologies are not mutually exclusive. It is possible to mix parts of one with

another, e.g. EJBs may use JDBC for accessing database records.

The purpose of this paper is to review how others have chosen to balance the needs of

a database system with an architecture that utilizes the most appropriate mix of Java

technologies. A particular emphasis for the paper is how the newer JDO changes the

balance between direct JDBC calls and a tiered EJB approach.

2 Motivation

The creation of the World Wide Web has added the problem of incorporating a

database system into multi-tiered applications. Java technologies provide an excellent

means for creating web applications.

 System designers in the Java realm can choose between Java servlets and Java

Server Pages (JSP) for the front end of an application. Servlets and JSPs can use the



Craig E. Ward Page 2 7/3/05

JDBC API directly or they can access a back end of EJBs. The designer must then choose

between Container Managed Persistence (CMP) or Bean Managed Persistence  (BMP)

for any Entity EJBs. Back end containers that support the JDO API are now becoming

available and provide another option.

The growing number of combinations of these technologies presents an interesting

problem. Which technology or combination of technologies is best for any particular

application?

3 Background Work

JDO technology is a relatively recent addition to the “Java suite.” Most of the

material currently available focuses on the balances between using JDBC directly or

EJBs in a container. The issue of CMP vs. BMP for any EJBs has also been researched.

How the market will respond to JDO technology is still an open question.

(Eisenberg and Melton, 1998) describe the SQLJ standard and illustrate how it can be

used to embed SQL code directly into Java code. SQLJ is a wrapper around JDBC and

does not seem to be in much use today. It is included for completeness.

(Salo and Hill, 2000) provides a comprehensive comparison of using EJBs in various

combinations of servlets and JSP pages. (Tost, 2000) discusses the benefits of using Java

Beans (an embeddable object not related to the later EJB standard) and EJBs together.

The performance and scalability of J2EE applications is addressed in (Cecchet,

Marguerite, and Zwaenepoel, 2002) and (Gorton and Liu, 2003). The former implements

an e-commerce application using different architectures comprised of Entity beans and

Session beans with BMP and CMP. The latter focuses on a similar issue but reports on

experiments using several different container systems.

One of the papers does explicitly address JDO. In (Baldwin, 2003), the issue hinges

on how well these technologies (plus some non-Java specific ones) handle the extremely

large data sets at the National Climate Data Center.

The other references serve as background for the JDO technology.

The goal of this research paper will be to synthesize the established results regarding

direct access using JDBC in servlets or JSPs versus using the tiered architectures possible

with EJBs with the new developments possible with JDO.
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