3 C/C++ Buffer Overflows

A Presentation to the Unix Users
Association of Southern California
Orange County Chapter

6/13/2005 Craig E. Ward

i Agenda

v Some of my background.
v What | hope you get out of the presentation.
v Background on computer architecture.
v Overflowing the stack.
v Overflowing the heap.

v Counter measures and counter-counter
measures.

v How to avoid these mistakes.
v Resources for further information.

6/13/2005 Craig E. Ward

i About Me

v Programming professionally since 1982

v Programmed in assemblers, Pascal, C,
shell scripts, Java, et.al.

v Completed MSCS at LMU in December
2004 with original research into security
issues of programming languages

v Currently working at USC Information
Sciences Institute

6/13/2005 Craig E. Ward 3

What | hope you take away

i from the talk.

v Buffer overflows are a serious problem,
still.

v Know the signs of the problem when
working with legacy code.

v Know what traps to avoid when writing
new code.

v Programming languages are tools and
like any tool, can be mishandled.

6/13/2005 Craig E. Ward 4

Simplified Memory

i Architecture

Higher Addresses

- Stack grows down to lower addresses

HEAP T

6/13/2005

Heap grows up to higher addresses

Lower Addresses

Craig E. Ward

Simplified Memory
Architecture

Temporaries

Local Variables

Other
Bookkeeping

H EAP T Return Address

Arguments
Return values

6/13/2005 Craig E. Ward

Basic Buffer Overflow: Stack

i Smashing

v Takes advantage of the lack of bounds
checking in C and C++ |languages.

v Uses an unchecked limit to inject
alternate data into the stack.

v Usually used to inject “shell code” into
the faulty program.

6/13/2005 Craig E. Ward 7

Basic Buffer Overflow: Stack
Smashing

#include <stdio.h>
#include <string.h>

void function(char *str) {
char buffer[16];
printf("\nIn function...");
strcpy(buffer,str);
printf("Leaving function\n");

}

int main() {
char large string[256];
int 1;

for(i = 0; 1 < 255; 1i++)

large string[i] = 'A";
function(large string);
return(0) ;

}

6/13/2005 Craig E. Ward

Basic Buffer Overflow: Stack

i Smashing

$./example?

In function...Leaving function
Segmentation fault

$

6/13/2005 Craig E. Ward

Basic Buffer Overflow: Stack

i Smashing

v What happened?

A%

6/13/2005

The function allocated 16 bytes for the
array.

The allocation was on the stack.
The caller sent 256 bytes.

These 256 bytes “overflowed” into other
areas of the stack and “smashed”
Important booking data such as the proper
return address to the function’s caller.

Craig E. Ward 10

Basic Buffer Overflow: Stack

i Smashing

v Imagine what could happen If:
v Instead of sloppy data, useable code had
been used.
v This code would effectively take over the
flow of control of the program.

v Often this is “shell code.”

6/13/2005 Craig E. Ward 11

i Heap Buffer Overflows

v Heap storage is dynamically allocated
at runtime.

v Rather than over-writing stack, these
attacks over-write memory in the heap.

v Can be used to change values used for
security processing.

v Often used with a stack smashing
attack.

6/13/2005 Craig E. Ward 12

i Heap Buffer Overflows

v As with stack smashing, the
fundamental problem is that a program
moves data into heap allocated memory
without checking that the data will fit
into the allocated space.

6/13/2005 Craig E. Ward 13

Heap Buffer Overflows

#1nclude <stdio.h>
#include <string.h>
#include <stdlib.h>

This example adapted from [Viega/McGraw, 2002] Example 7-12.

int main(int argc, char **argv)

{
char *str = (char *)malloc(sizeof(char) * 4);
char *super_user = (char *)malloc(sizeof(char) * 9);
printf("Address of str is: %p\n", str);
printf("Address of super_user is: %p\n", super_user);
strcpy(super_user, "viega");
if (argc > 1)
strcpy(str, argvl[l]);
else
strcpy(str, "xyz");
printf("Value in buffer str: %s\nValue in buffer super_user: %s\n",
str,super_user);
return(0) ;
Y

6/13/2005 Craig E. Ward 14

Heap Buffer Overflows

$./vm_example2A abcd

Address of str 1s: Ox300140

Address of super _user 1i1s: 0x300150

Value in buffer str: abcd

Value in buffer super_user: viega

$./vm_example2A abcdefghiklmnopgmcgraw
Address of str is: 0x300140

Address of super _user 1is: 0x300150

Value in buffer str: abcdefghiklmnopgmcgraw
Value in buffer super_user: mcgraw

$

6/13/2005 Craig E. Ward 15

i Heap Buffer Overflows

v Imagine what could happen if:

v The variable “super_user” was part of a

security protocol: we have a new super
user.

v The platform didn’t allow executable code
In the stack: Inject your shell code into the
heap and change the return address to
match your injected code.

6/13/2005 Craig E. Ward 16

i Counter Measures

v StackGuard: “Canary” in the stack.
v StackShield: Return Address Copy.

v How each has been attacked: Pointer
Subterfuge.

6/13/2005 Craig E. Ward 17

i Counter Measure: StackGuard

v Uses an extra word, a "canary’, in the
stack.

v If the canary is changed, this signals
that the stack has been smashed and
the OS can take preventative measures,
e.g. kill the program.

6/13/2005 Craig E. Ward 18

i Counter Measure: StackGuard

v Two types of values are used for the
canary:.
v The four bytes Ox000d0aff

» Most string operations terminate at NULL
(0x00), carriage return (0x0d), linefeed (0x0a)
or end-of-file (Oxff)

+ A random number difficult to predict.

6/13/2005 Craig E. Ward 19

i Counter Measure: StackShield

v otackShield makes a copy of the
expected return address in another
stack and this address is compared to
the current return address when the
function returns.

6/13/2005 Craig E. Ward 20

i Counter-Counter Measures

v The techniques of StackGuard and
StackShield both prevent many attacks,
but imaginative people have found a
way round them.

v Example from Bulba and Kil3r,
“Bypassing StackGuard and
StackShield”, Phrack 56, May 2000.
(Article 5)

6/13/2005 Craig E. Ward 21

Pointer Subterfuge

int f (char ** argv)

{

int pipa;// useless variable
char *p;
char af[30];

p=a,

printf ("p=%x\t -- before 1lst strcpy\n",p);
strcpy(p,argv([l]); // <== vulnerable strcpy()
printf ("p=%x\t -- after 1lst strcpy\n",p);
strncpy(p,argv([2],16);

printf("After second strcpy ;)\n");

}

main (int argc, char ** argv) {
f(argv);
execl("back _to vul","",0); //<-- The exec that fails
printf("End of program\n");

6/13/2005 Craig E. Ward

22

i Pointer Subterfuge

v Characteristics of a vulnerable program:

1. A pointer such as p must be located next to a
buffer such as a.

2. A misused library routine that can execute an
overflow into p. In the example, this is strcpy.

5. A second copy function that uses p as the
address of the buffer to write without p having
been initialized.

v Authors identify one well-known program

with these properties: wu-ftpd 2.5

6/13/2005 Craig E. Ward 23

i GNU C++ VPTR Exploit

v Extremely narrow attack as it applies just to a
particular implementation of C++ on a
particular platform and not to the language in
general.

v Builds upon the basic stack buffer overflow
attack.

v Virtual Pointers, VPTRSs, used to implement
polymorphism in C++.

v Methods selected dynamically at runtime and
not statically at build time.

6/13/2005 Craig E. Ward 24

Sample Code for VPTR Attack

class BaseClass class MyClassl:public BaseClass
{ {
private: public:
char Buffer[32]; void PrintBuffer ()
public: {
void SetBuffer(char *String) printf("MyClassl: ");
{ BaseClass::PrintBuffer();
strcpy(Buffer,String); }
} s
virtual void PrintBuffer ()
{
printf("%s\n",Buffer);
. b This is just a snippet of the
example.

6/13/2005 Craig E. Ward 25

i GNU C++ VPTR Exploit

v The base class in the example defines a
virtual function PrintBuffer. This requires

derived classes to define their own version of
PrintBuffer.

v GCC on |A32 stores pointer to these virtual
functions on the stack.

v A stack overflow could, theoretically, over-
write these addresses and change the copy
of the method that is used.

6/13/2005 Craig E. Ward 26

i GNU C++ VPTR Exploit

v This vulnerability is likely extremely difficult to
exploit.

v It is Important to note, however, because it
shows that just because a language is object
oriented does not mean that it is totally safe.

6/13/2005 Craig E. Ward 27

i Common Thread

v Programs that use standard library
routines that do not check bounds.

v Avoid using them. Many have a bounds
checking counterpart, e.qg. strcpy and
strncpy.

v When you do use one, know why it's
okay.

6/13/2005 Craig E. Ward 28

i Static Code Analysis Tools

v There are tools available that are
specifically designed to help find these
problem areas before they can be
exploited.

v flawfinder

v ITS4

+ findbugs

v rats (Secure Software, Inc.)

6/13/2005 Craig E. Ward 29

Example run of flawfinder

finder example2.c
Flawfinder version 1.26, (C) 2001-2004 David A. Wheeler.
Number of dangerous functions in C/C++ ruleset: 158
Examining example2.c
example2.c:12: [4] (buffer) strcpy:
Does not check for buffer overflows when copying to destination.
Consider using strncpy or strlcpy (warning, strncpy is easily misused).
example2.c:9: [2] (buffer) char:
Statically-sized arrays can be overflowed. Perform bounds checking,
use functions that 1imit length, or ensure that the size is larger than
the maximum possible length.
example2.c:17: [2] (buffer) char:
Statically-sized arrays can be overflowed. Perform bounds checking,
use functions that 1imit length, or ensure that the size is larger than
the maximum possible length.

Hits = 3

Lines analyzed = 27 in 0.76 seconds (102 lines/second)

Physical Source Lines of Code (SLOC) = 19

Hits@level = [0] 0 [1] 0 [2] 2 [3] 0 [4] 1 [5] 0

Hits@level+ = [0+] 3 [1+] 3 [2+] 3 [3+] 1 [4+] 1 [5+4] 0

Hits/KSLOC@level+ = [0+] 157.895 [1+] 157.895 [2+] 157.895 [3+] 52.6316 [4+] 52.6316 [5+]
Minimum risk level =1

Not every hit is necessarily a security vulnerability.

There may be other security vulnerabilities; review your code!

6/13/2005 Craig E. Ward 30

i Conclusions

v Accept that all programming languages have
pluses and minuses.

v Know the assets and problems of your
implementation language so you can balance
speed, security, and maintainability.

v Regardless of language, define a coding
standard that addresses security issues.

v Take advantage of the existing security
guidelines for your language.

6/13/2005 Craig E. Ward 31

A Short Bibliography

J. Viega and G. McGraw, Building Secure Software. Addison-Wesley.
2001.

v G. Hoglund and G. McGraw, Exploiting Software: How to Break Code.
Addison-Wesley, 2004

v R. Teer, "Secure C Programming." Sun Developer Network Community.
http://developers.sun.com/solaris/articles/secure.html, 2001.

v J. Pincus and B. Baker. "Beyond Stack Smashing: Recent Advances in
Exploiting Buffer Overruns", IEEE Security & Privacy, July/August 2004,
pp. 20-27.

v Aleph One, "Smashing the Stack for Fun and Profit", Phrack,
November 1996, http://www.phrack.org/show.php?p=49&a=14.

v D. Wheeler, Flawfinder, http://www.dwheeler.com/flawfinder/.

<

6/13/2005 Craig E. Ward 32

http://developers.sun.com/solaris/articles/secure.html
http://www.phrack.org/show.php?p=49&a=14
http://www.dwheeler.com/flawfinder/

A Short Bibliography

v Bulba and Kil3r, "Bypassing StackGuard and StackShield", Phrack,
May 2000, http://www.phrack.org/ show.php?p=56&a=>5.

v J. Viega, J. Bloch, T. Kohno, and G. McGraw, "Token-Based Scanning
of Source Code for Security Problems", ACM Transactions on
Information and System Security, Vol. 5, No. 3, August 2002, Pages
238-261. (About development of ITS4.)

v D. Gilliam, J. Kelly, J. Powell, M. Bishop, "Reducing Software Security
Risk through an Integrated Approach," NASA Goddard Software
Engineering Workshop, pp. 36-42, November 2001.

v Rix, "Smashing C++ VPTRS", Phrack, May 2000,
http://www.phrack.org/show.php?p=56&a=8.

6/13/2005 Craig E. Ward 33

http://www.phrack.org/
http://www.phrack.org/show.php?p=56&a=8

i Questions or Comments?

6/13/2005 Craig E. Ward

34

