
6/13/2005 Craig E. Ward 1

C/C++ Buffer Overflows

A Presentation to the Unix Users
Association of Southern California

Orange County Chapter

6/13/2005 Craig E. Ward 2

Agenda

ν Some of my background.
ν What I hope you get out of the presentation.
ν Background on computer architecture.
ν Overflowing the stack.
ν Overflowing the heap.
ν Counter measures and counter-counter

measures.
ν How to avoid these mistakes.
ν Resources for further information.

6/13/2005 Craig E. Ward 3

About Me

ν Programming professionally since 1982
ν Programmed in assemblers, Pascal, C,

shell scripts, Java, et.al.
ν Completed MSCS at LMU in December

2004 with original research into security
issues of programming languages

ν Currently working at USC Information
Sciences Institute

6/13/2005 Craig E. Ward 4

What I hope you take away
from the talk.

ν Buffer overflows are a serious problem,
still.

ν Know the signs of the problem when
working with legacy code.

ν Know what traps to avoid when writing
new code.

ν Programming languages are tools and
like any tool, can be mishandled.

6/13/2005 Craig E. Ward 5

Simplified Memory
Architecture

STACK

HEAP

Higher Addresses

Lower Addresses

Stack grows down to lower addresses

Heap grows up to higher addresses

6/13/2005 Craig E. Ward 6

Simplified Memory
Architecture

STACK

HEAP

Temporaries

Local Variables

Other
Bookkeeping

Return Address

Arguments
Return values

6/13/2005 Craig E. Ward 7

Basic Buffer Overflow: Stack
Smashing

ν Takes advantage of the lack of bounds
checking in C and C++ languages.

ν Uses an unchecked limit to inject
alternate data into the stack.

ν Usually used to inject “shell code” into
the faulty program.

6/13/2005 Craig E. Ward 8

Basic Buffer Overflow: Stack
Smashing

#include <stdio.h>
#include <string.h>

void function(char *str) {
 char buffer[16];
 printf("\nIn function...");
 strcpy(buffer,str);
 printf("Leaving function\n");
}

int main() {
 char large_string[256];
 int i;

 for(i = 0; i < 255; i++)
 large_string[i] = 'A';
 function(large_string);
 return(0);
}

6/13/2005 Craig E. Ward 9

Basic Buffer Overflow: Stack
Smashing

$./example2

In function...Leaving function
Segmentation fault
$

6/13/2005 Craig E. Ward 10

Basic Buffer Overflow: Stack
Smashing

ν What happened?
ν The function allocated 16 bytes for the

array.
ν The allocation was on the stack.
ν The caller sent 256 bytes.
ν These 256 bytes “overflowed” into other

areas of the stack and “smashed”
important booking data such as the proper
return address to the function’s caller.

6/13/2005 Craig E. Ward 11

Basic Buffer Overflow: Stack
Smashing

ν Imagine what could happen if:
ν Instead of sloppy data, useable code had

been used.
ν This code would effectively take over the

flow of control of the program.
ν Often this is “shell code.”

6/13/2005 Craig E. Ward 12

Heap Buffer Overflows

ν Heap storage is dynamically allocated
at runtime.

ν Rather than over-writing stack, these
attacks over-write memory in the heap.

ν Can be used to change values used for
security processing.

ν Often used with a stack smashing
attack.

6/13/2005 Craig E. Ward 13

Heap Buffer Overflows

ν As with stack smashing, the
fundamental problem is that a program
moves data into heap allocated memory
without checking that the data will fit
into the allocated space.

6/13/2005 Craig E. Ward 14

Heap Buffer Overflows
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char **argv)
{

char *str = (char *)malloc(sizeof(char) * 4);
char *super_user = (char *)malloc(sizeof(char) * 9);
printf("Address of str is: %p\n", str);
printf("Address of super_user is: %p\n", super_user);
strcpy(super_user, "viega");
if (argc > 1)

strcpy(str, argv[1]);
else

strcpy(str, "xyz");

printf("Value in buffer str: %s\nValue in buffer super_user: %s\n",
 str,super_user);

return(0);
}

This example adapted from [Viega/McGraw, 2002] Example 7-12.

6/13/2005 Craig E. Ward 15

Heap Buffer Overflows
$./vm_example2A abcd
Address of str is: 0x300140
Address of super_user is: 0x300150
Value in buffer str: abcd
Value in buffer super_user: viega
$./vm_example2A abcdefghiklmnopqmcgraw
Address of str is: 0x300140
Address of super_user is: 0x300150
Value in buffer str: abcdefghiklmnopqmcgraw
Value in buffer super_user: mcgraw
$

6/13/2005 Craig E. Ward 16

Heap Buffer Overflows

ν Imagine what could happen if:
ν The variable “super_user” was part of a

security protocol: we have a new super
user.

ν The platform didn’t allow executable code
in the stack: Inject your shell code into the
heap and change the return address to
match your injected code.

6/13/2005 Craig E. Ward 17

Counter Measures

ν StackGuard: “Canary” in the stack.

ν StackShield: Return Address Copy.

ν How each has been attacked: Pointer
Subterfuge.

6/13/2005 Craig E. Ward 18

Counter Measure: StackGuard

ν Uses an extra word, a “canary”, in the
stack.

ν If the canary is changed, this signals
that the stack has been smashed and
the OS can take preventative measures,
e.g. kill the program.

6/13/2005 Craig E. Ward 19

Counter Measure: StackGuard

ν Two types of values are used for the
canary:
ν The four bytes 0x000d0aff

ν Most string operations terminate at NULL
(0x00), carriage return (0x0d), linefeed (0x0a)
or end-of-file (0xff)

ν A random number difficult to predict.

6/13/2005 Craig E. Ward 20

Counter Measure: StackShield

ν StackShield makes a copy of the
expected return address in another
stack and this address is compared to
the current return address when the
function returns.

6/13/2005 Craig E. Ward 21

Counter-Counter Measures

ν The techniques of StackGuard and
StackShield both prevent many attacks,
but imaginative people have found a
way round them.

ν Example from Bulba and Kil3r,
“Bypassing StackGuard and
StackShield”, Phrack 56, May 2000.
(Article 5)

6/13/2005 Craig E. Ward 22

Pointer Subterfuge
int f (char ** argv)
{
 int pipa;// useless variable
 char *p;
 char a[30];

 p=a;

 printf ("p=%x\t -- before 1st strcpy\n",p);
 strcpy(p,argv[1]); // <== vulnerable strcpy()
 printf ("p=%x\t -- after 1st strcpy\n",p);
 strncpy(p,argv[2],16);
 printf("After second strcpy ;)\n");
}

main (int argc, char ** argv) {
 f(argv);
 execl("back_to_vul","",0); //<-- The exec that fails
 printf("End of program\n");
}

6/13/2005 Craig E. Ward 23

Pointer Subterfuge

ν Characteristics of a vulnerable program:
1. A pointer such as p must be located next to a

buffer such as a.
2. A misused library routine that can execute an

overflow into p. In the example, this is strcpy.
3. A second copy function that uses p as the

address of the buffer to write without p having
been initialized.

ν Authors identify one well-known program
with these properties: wu-ftpd 2.5

6/13/2005 Craig E. Ward 24

GNU C++ VPTR Exploit

ν Extremely narrow attack as it applies just to a
particular implementation of C++ on a
particular platform and not to the language in
general.

ν Builds upon the basic stack buffer overflow
attack.

ν Virtual Pointers, VPTRs, used to implement
polymorphism in C++.

ν Methods selected dynamically at runtime and
not statically at build time.

6/13/2005 Craig E. Ward 25

Sample Code for VPTR Attack
class BaseClass
{
 private:
 char Buffer[32];
 public:
 void SetBuffer(char *String)
 {
 strcpy(Buffer,String);
 }
 virtual void PrintBuffer()
 {
 printf("%s\n",Buffer);
 }
};

class MyClass1:public BaseClass
{
 public:
 void PrintBuffer()
 {
 printf("MyClass1: ");
 BaseClass::PrintBuffer();
 }
};

This is just a snippet of the
example.

6/13/2005 Craig E. Ward 26

GNU C++ VPTR Exploit

ν The base class in the example defines a
virtual function PrintBuffer. This requires
derived classes to define their own version of
PrintBuffer.

ν GCC on IA32 stores pointer to these virtual
functions on the stack.

ν A stack overflow could, theoretically, over-
write these addresses and change the copy
of the method that is used.

6/13/2005 Craig E. Ward 27

GNU C++ VPTR Exploit

ν This vulnerability is likely extremely difficult to
exploit.

ν It is important to note, however, because it
shows that just because a language is object
oriented does not mean that it is totally safe.

6/13/2005 Craig E. Ward 28

Common Thread

ν Programs that use standard library
routines that do not check bounds.

ν Avoid using them. Many have a bounds
checking counterpart, e.g. strcpy and
strncpy.

ν When you do use one, know why it’s
okay.

6/13/2005 Craig E. Ward 29

Static Code Analysis Tools

ν There are tools available that are
specifically designed to help find these
problem areas before they can be
exploited.
ν flawfinder

ν ITS4

ν findbugs

ν rats (Secure Software, Inc.)

6/13/2005 Craig E. Ward 30

Example run of flawfinder
$ flawfinder example2.c
Flawfinder version 1.26, (C) 2001-2004 David A. Wheeler.
Number of dangerous functions in C/C++ ruleset: 158
Examining example2.c
example2.c:12: [4] (buffer) strcpy:
 Does not check for buffer overflows when copying to destination.
 Consider using strncpy or strlcpy (warning, strncpy is easily misused).
example2.c:9: [2] (buffer) char:
 Statically-sized arrays can be overflowed. Perform bounds checking,
 use functions that limit length, or ensure that the size is larger than
 the maximum possible length.
example2.c:17: [2] (buffer) char:
 Statically-sized arrays can be overflowed. Perform bounds checking,
 use functions that limit length, or ensure that the size is larger than
 the maximum possible length.

Hits = 3
Lines analyzed = 27 in 0.76 seconds (102 lines/second)
Physical Source Lines of Code (SLOC) = 19
Hits@level = [0] 0 [1] 0 [2] 2 [3] 0 [4] 1 [5] 0
Hits@level+ = [0+] 3 [1+] 3 [2+] 3 [3+] 1 [4+] 1 [5+] 0
Hits/KSLOC@level+ = [0+] 157.895 [1+] 157.895 [2+] 157.895 [3+] 52.6316 [4+] 52.6316 [5+] 0
Minimum risk level = 1
Not every hit is necessarily a security vulnerability.
There may be other security vulnerabilities; review your code!

6/13/2005 Craig E. Ward 31

Conclusions

ν Accept that all programming languages have
pluses and minuses.

ν Know the assets and problems of your
implementation language so you can balance
speed, security, and maintainability.

ν Regardless of language, define a coding
standard that addresses security issues.

ν Take advantage of the existing security
guidelines for your language.

6/13/2005 Craig E. Ward 32

A Short Bibliography
ν J. Viega and G. McGraw, Building Secure Software. Addison-Wesley.

2001.

ν G. Hoglund and G. McGraw, Exploiting Software: How to Break Code.
Addison-Wesley, 2004

ν R. Teer, "Secure C Programming." Sun Developer Network Community.
http://developers.sun.com/solaris/articles/secure.html, 2001.

ν J. Pincus and B. Baker. "Beyond Stack Smashing: Recent Advances in
Exploiting Buffer Overruns", IEEE Security & Privacy, July/August 2004,
pp. 20-27.

ν Aleph One, "Smashing the Stack for Fun and Profit", Phrack,
November 1996, http://www.phrack.org/show.php?p=49&a=14.

ν D. Wheeler, Flawfinder, http://www.dwheeler.com/flawfinder/.

http://developers.sun.com/solaris/articles/secure.html
http://www.phrack.org/show.php?p=49&a=14
http://www.dwheeler.com/flawfinder/

6/13/2005 Craig E. Ward 33

A Short Bibliography
ν Bulba and Kil3r, "Bypassing StackGuard and StackShield", Phrack,

May 2000, http://www.phrack.org/ show.php?p=56&a=5.
ν J. Viega, J. Bloch, T. Kohno, and G. McGraw, "Token-Based Scanning

of Source Code for Security Problems", ACM Transactions on
Information and System Security, Vol. 5, No. 3, August 2002, Pages
238–261. (About development of ITS4.)

ν D. Gilliam, J. Kelly, J. Powell, M. Bishop, "Reducing Software Security
Risk through an Integrated Approach," NASA Goddard Software
Engineering Workshop, pp. 36-42, November 2001.

ν Rix, "Smashing C++ VPTRS", Phrack, May 2000,
http://www.phrack.org/show.php?p=56&a=8.

http://www.phrack.org/
http://www.phrack.org/show.php?p=56&a=8

6/13/2005 Craig E. Ward 34

Questions or Comments?

